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ABSTRACT
We propose the correlated mobile k-hop clustered networks

model to implement correlated node movements and scalable
clusters. We divide network states into three categories, i.e.,
cluster-sparse state, cluster-dense state and cluster-inferior
dense state, and achieve the critical transmission range for
the last two states. Furthermore, we find that correlated
mobility and cluster scalability are closely related with each
other and the impact of these two properties on connectivity
is mainly through influencing network state transition.
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1. INTRODUCTION
Since the seminal work [2] done by Gupta et al., there

has been a great interest in the scaling analysis of network
performance and many follow-up works have explored the
asymptotic connectivity of wireless networks. But most of
these works focus on stationary and flat networks, where
nodes are independently and uniformly distributed. Since
mobility and clustering property have been found to improve
various aspects of network performance, it is interesting to
explore the impact of correlated mobility and cluster scala-
bility on network connectivity. In [3], Wang et al. studied
the critical transmission range for various networks under
different mobility models, but it doesn’t achieve real clus-
tering effect. Nevertheless, it provides the major motivation
for our work.
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In order to understand the nature of correlated node move-
ments and node spatial heterogeneity, and explore their mu-
tual interactions, implications and impact on the asymp-
totic connectivity, we propose the correlated mobile k-hop
clustered networks model to take into consideration both
the correlated mobility and cluster scalability. We adopt
the correlated mobility model in [1] to implement the group
mobility, and suppose that there are nα(0 < α ≤ 1) cluster
heads and nγ(0 < γ ≤ 1) clusters, each with a radius of
R = Θ(nβ)(β ≤ 0) in the whole network O, which is as-
sumed to be a unit torus. The cluster radius can scale with
the number of nodes n, and with different values of β we can
implement cluster scalability.

To investigate the impact of correlated mobility and clus-
ter scalability on connectivity in correlated mobile k-hop
clustered networks when the number of nodes n → ∞ and
study the influence that α, β and γ has on network per-
formance, we divide the network states into three categories
according to the value of these three parameters, the cluster-
sparse state (α + 2β < 0), cluster-dense state (α + 2β ≥
1−γ
k

) and cluster-inferior dense state (0 ≤ α + 2β < 1−γ
k

).

We prove the critical transmission range to be
√

logn
kπnα for

cluster-dense state and
√

[k(α+2β)+γ] logn
kπnα for cluster-inferior

dense state.

2. NETWORK MODEL

2.1 Network Deployment
In this part, we illustrate the initial network architecture

deployment before cluster members begin to move. We sup-
pose there are n cluster-member nodes and nα cluster-head
nodes in a unit square O, where the cluster head exponen-
t 0 < α ≤ 1. The cluster-head nodes are uniformly and
independently distributed in O, which is assumed to be a
torus in R2 to avoid border effects. Different from the net-
work model in [3], cluster-member nodes are grouped into m
clusters where m = nγ and the cluster exponent 0 < γ ≤ 1.
Each cluster region is centered around a logical center (home
point) and has a circular shape with radius R as R = Θ(nβ),
where the cluster radius exponent β ≤ 0. The home points
are uniformly and independently distributed in O and the
cluster-member nodes are uniformly and independently dis-
tributed in their belonging cluster regions, each of which has
a circular area of πR2. We assume that each cluster is com-
prised of $ = n

m
= n1−γ cluster members. We also assume

nα and nγ to be integers for convenience.



2.2 Correlated Mobility
After deploying the initial network architecture, the clus-

ter heads will remain stationary while the cluster members
will move. We illustrate our Correlated Mobility Model as
follows:

Correlated Mobility Model : After the network deploy-
ment, home points and cluster members will move. Time is
slotted into k time slots. At the beginning of each time slot,
each home point will uniformly and independently choose
a position within the unit torus O and then each cluster
member will uniformly and independently choose its loca-
tion in its corresponding cluster region. In the rest of each
time slot, the home points and cluster members will remain
stationary.

2.3 Cluster Scalability
After introducing the system model, we will present the

unique characteristic of our network, cluster scalability .
As we can see, the cluster radius scales with n by assuming
R = Θ(nβ) where β ≤ 0. Hence, when β is small (with large
absolute value), the cluster size will be small and clusters
are sparsely distributed in O. While the cluster region will
become relatively large when β is large (with small absolute
value), which leads to densely distributed clusters.

This is the qualitative illustration of cluster scalability
and we should also provide a quantitative definition. We
compare the average coverage of cluster heads, 1

nα , with the

cluster region πR2 = Θ(n2β) and give the following three
cases:
(C1). Cluster-sparse state (member-dense state).

When πR2 = o( 1
nα ), we have α + 2β < 0. The cluster

size is sufficiently small compared with the average coverage
of each cluster head and clusters are sparsely distributed in
the whole network O. Besides, the member density of each
cluster d = $

πR2 = Θ(n1−2β−γ) is large. Thus, this is also
the member-dense state and the clustering property is fair-
ly dominant. Each cluster can be regarded as an entirety
because cluster members stay so close and move so consis-
tently.
(C2). Cluster-dense state (member sparse state).

In contrast to the previous case, we have α+ 2β ≥ 1−γ
k

in

this state and can further have πR2 = ω( 1
nα ). The cluster

size is relatively large, clusters are densely distributed in
O and they might intersect with each other. The member
density d is relatively small, and hence this is the member-
sparse state and there is almost no substantial clustering.
In this case, every cluster member performs more like an
independent node.
(C3). Cluster-inferior dense state (member-inferior sparse
state).

In this case, we have 0 ≤ α + 2β < 1−γ
k

and still have

πR2 = ω( 1
nα ). It is the transitional state between the

cluster-sparse state and cluster-dense state. In this case,
we can neither regard members in the same cluster as a w-
hole nor treat them as totally independent nodes. Instead,
we group the nodes into sub-clusters.

3. MAIN RESULTS AND INTUITIONS
We summarize our main results as follows.

(C2). Cluster-dense state (α+ 2β ≥ 1−γ
k

).

We have rc =
√

logn
kπnα , where 0 < α ≤ 1, 0 < γ ≤ 1.

(C3). Cluster-inferior dense state (0 ≤ α+ 2β < 1−γ
k

).

We have rc =
√

[k(α+2β)+γ] logn
kπnα , where 0 < α ≤ 1, 0 <

γ ≤ 1.

4. CONCLUSION
We illustrate our results in Figure 4.1. Although the three

parameters all have an influence on network state transition,
thus affecting network connectivity, their separate functions
are different. α can serve as a centralized network coordina-
tor because this parameter can adjust rc from the perspec-
tive of the whole network. In contrast, β controls network
in a distributed manner, since it influences cluster radius R
and node density $ on the cluster level. γ can control the
number of clusters as well as node density, so it regulates
the network both in centralized and distributed manner.

With correlated mobility and cluster scalability, we can
achieve network connectivity with a smaller critical trans-
mission range than that in an i.i.d. mobility network. Thus,
we can save transmission power by bringing correlat-
ed mobility and cluster scalability into the networks.
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Figure 4.1: Impact of α, β and γ on Network State
Transition. Network state transition is jointly affect-
ed by α, β and γ. Among the three factors, α is the
most influential, and rc monotonically decreases with
α. While γ can on some level shape the curve, the
impact of β on rc is mainly through determining the
transition points.
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