Complexity vs. Optimality: Unraveling Source-Destination Connection in Uncertain Graphs

Xinzhe Fu, Zhiying Xu, Qianyang Peng, Luoyi Fu and Xinbing Wang

April 27, 2017
1 Motivations

2 Problem Formulation
 ■ Modeling
 ■ Problem Definition

3 Computational Complexity

4 Proposed Algorithms
 ■ Exact Algorithm
 ■ Approximation Algorithms

5 Experiments
Outline

1 Motivations

2 Problem Formulation
 ■ Modeling
 ■ Problem Definition

3 Computational Complexity

4 Proposed Algorithms
 ■ Exact Algorithm
 ■ Approximation Algorithms

5 Experiments
Motivating Examples

Can the two nodes communicate with each other?
Motivating Examples

Is the two papers related with each other?
Motivating Examples

- Link Failure, “Gift Citation”
- Solution: Link Probing, Text Mining

Communication Network

Citation Network
Motivating Examples

- **Communication Network**
- **Citation Network**

- **Link Failure, “Gift Citation”**
- **Solution:** Link Probing, Text Mining
Uncertainty is Prevalent

Tradition Deterministic Graph Is Not Enough!

- Well-studied problem
- Graph Reachability

- Injecting Uncertainty into Graphs
- Redefine the Source-Destination Connectivity Determination
Outline

1 Motivations

2 Problem Formulation
 ■ Modeling
 ■ Problem Definition

3 Computational Complexity

4 Proposed Algorithms
 ■ Exact Algorithm
 ■ Approximation Algorithms

5 Experiments
Uncertain Graph

- Network topology (Prior)
- Prior existence probability (Edges)
- Testing cost (Edges)
- Composition of realizations

Uncertain Graph (Edge Uncertainty)
For an uncertain graph G, denote G as its underlying realization. G can be interpreted as a product distribution over all its possible realizations.
The key elements of an uncertain graph $G(V, E, p, c)$:

- V: vertex set
- E: edge set
- p: $E \mapsto (0, 1]$, probability function
- c: $E \mapsto \mathbb{R}^+$, cost function
Problem Definition

Definition (Problem Formulation)

Given an uncertain graph $G(V, E, p, c)$ and two nodes $s, t \in V$ designated as source and destination, find a testing strategy to determine the s-t connectivity while incurring the minimum expected cost.

- The results of tests are dictated by the (priorly unknown) underlying graph.
- The expectation of cost is taken over all possible realizations of G.
- The testing strategy can be adaptive.
Problem Definition

Definition (Problem Formulation)

Given an uncertain graph $G(V, E, p, c)$ and two nodes $s, t \in V$ designated as source and destination, find a testing strategy to determine the s-t connectivity while incurring the minimum expected cost.

- The results of tests are dictated by the (priorly unknown) underlying graph.
- The expectation of cost is taken over all possible realizations of G.
- The testing strategy can be adaptive.
Adaptive Testing Strategy

How to properly define the strategy?

- A strategy decide the next edge to test based on the previous results.
- A strategy terminates by verifying the existence of an s-t path or an s-t cut.

Definition (Temporary State)

A temporary state s of an uncertain graph $G(V, E, p, c)$ is an $|E|$-dimension vector with elements “0”, “1” and “*”. Define $S = \{0, 1, *\}^{|E|}$ to be the set of temporary states associated with G.
Adaptive Testing Strategy

How to properly define the strategy?

- A strategy decides the next edge to test based on the previous results.
- A strategy terminates by verifying the existence of an s-t path or an s-t cut.

Definition (Temporary State)

A temporary state s of an uncertain graph $G(V, E, p, c)$ is an $|E|$-dimension vector with elements “0”, “1” and “*”. Define $S = \{0, 1, *\}^{|E|}$ to be the set of temporary states associated with G.
Adaptive Testing Strategy

Definition (Temporary State)

A temporary state s of an uncertain graph $G(V, E, p, c)$ is an $|E|$-dimension vector with elements “0”, “1” and “*”. Define $S = \{0, 1, *\}^{|E|}$ to be the set of temporary states associated with G.

Definition (Adaptive Testing Strategy)

An adaptive testing strategy is a mapping $\pi : S \mapsto E \cup \{\bot\}$.

- Define $E_\pi(G)$ as the set of edges strategy π on the underlying graph G.
- The expected cost of π is given as $Cost(\pi) = \sum_{G \in \mathcal{G}}[Pr(G)\sum_{e \in E_\pi(G)}c(e)]$.
An Example

Definition (Adaptive Testing Strategy)
An adaptive testing strategy is a mapping $\pi: S \mapsto E \cup \{\perp\}$.

![Diagram showing an example of adaptive testing strategy]

- Testing Strategy
 - Values: $\{\ast, \ast, \ast\}, \{0, \ast, \ast\}, \{0, \ast, 1\}, \{\ast, \ast, 1\}, \{\ast, \ast, 0\}, \{\ast, 0, \ast\}, \{\ast, 0, 1\}, \{\ast, 0, 0\}
 - Edges: e_1, e_2, e_3, e_4, e_5

- Uncertain graph
 - Edges: e_1, e_2, e_3
 - Probabilities: $p(e_1) = 0.2, p(e_2) = 0.5, p(e_3) = 0.6$

- A possible underlying graph
 - Edges: e_1, e_2, e_3
 - Costs: $c(e_1) = 4, c(e_2) = 5, c(e_3) = 2$

- Evolution of Temporary State
 - Graph transitions
 - Known edges: e_1, e_2, e_3
 - Known non-edge: e_4
 - Potential edge: e_5
Outline

1. Motivations

2. Problem Formulation
 - Modeling
 - Problem Definition

3. Computational Complexity

4. Proposed Algorithms
 - Exact Algorithm
 - Approximation Algorithms

5. Experiments
Two Variants of the Problem

1. Compute the whole strategy (P1)

Definition (Decision Version of P1)

Given an uncertain graph $G(V, E, p, c)$ and two nodes $s, t \in V$ designated as source and destination, is there a testing strategy that determines the s-t connectivity with expected cost less than k.

2. Compute the strategy sequentially (P2)

Definition (Decision Version of P2)

Given an uncertain graph $G(V, E, p, c)$, two nodes $s, t \in V$ designated as source and destination and the current temporary state, decide the optimal next edge to test.
Two Variants of the Problem

1. Compute the whole strategy (P1)

Definition (Decision Version of P1)

Given an uncertain graph $G(V, E, p, c)$ and two nodes $s, t \in V$ designated as source and destination, is there a testing strategy that determines the s-t connectivity with expected cost less than k.

2. Compute the strategy sequentially (P2)

Definition (Decision Version of P2)

Given an uncertain graph $G(V, E, p, c)$, two nodes $s, t \in V$ designated as source and destination and the current temporary state, decide the optimal next edge to test.
Complexity-theoretic Results on P1

Theorem

Computing the expected cost of the optimal strategy is \#P-hard. (The decision version of a \#P-hard problem is NP-hard)

Proof

- By reduction from network (s-t) reliability problem.

1L. G. Valiant, “The complexity of enumeration and reliability problems”
Complexity-theoretic Results on P2

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deciding the optimal first edge to test is NP-hard.</td>
</tr>
</tbody>
</table>

| Proof. |
| The proof is done by reduction from the set cover problem. |

| Definition (The Set Cover Problem) |
| Given a universe \(\mathcal{U} \) of elements, a family \(\mathcal{S} \) of subsets of the universe and a predefined integer \(k \), does there exist a subfamily \(\mathcal{C} \subseteq \mathcal{S} \) such that \(\bigcup_{C \in \mathcal{C}} = \mathcal{U} \) and \(|\mathcal{C}| \leq k \). |
Theorem

Deciding the optimal first edge to test is NP-hard.

Proof.

Through appropriately assigning the value of P_s, C_s, P_M, C_M, P_e, C_e, we can show that the optimal first edge to test is M if and only if there does not exist a set cover C with $|C| \leq k$. □
Outline

1 Motivations

2 Problem Formulation
 ■ Modeling
 ■ Problem Definition

3 Computational Complexity

4 Proposed Algorithms
 ■ Exact Algorithm
 ■ Approximation Algorithms

5 Experiments
Markov Decision Process Framework

Definition (Markov Decision Process)

A mathematical model for modeling decision making under uncertain situations. A Markov Decision Process (MDP) model contains:

- State Space
- Decision Epochs
- Action Sets
- Transition Probabilities and Rewards
- Strategy (with certain expected total reward)

Markov Property: the effects of an action only depends on the current state and the action itself.
Mapping the Problem into MDP

The correspondence between the key elements:

- **State Space**: the set of temporary states
 - \(S = S_0 \cup S_1 \cup \ldots \cup S_{|E|} \)
- **Decision Epochs**
- **Action Sets**: testing edges
 - \(A_s, A = \bigcup_{s \in S} A_s = E \cup \{ \perp \} \)
- **Transition Probabilities and Rewards**
 - From \(s \) to \(s \cdot e \)
 - From \(s \) to \(s \setminus e \)
- **Strategy**
Algorithm 1 The MDP-based Exact Algorithm

Input: Uncertain graph $G(V, E, p, c)$, source s, destination t
Output: The optimal testing strategy π

1: Initialize: $u_\pi(s) = 0$, for all $s \in S|E|$
2: for $i = |E|$ to 0 do
3: for All s in S_i do
4: if s is a terminating state then
5: $u_\pi(s) := 0$, $\pi(s) := \bot$.
6: else
7: $e^* := \arg\max_{e \in A_s} \{-c(e) + p(e)u_\pi(s \cdot e) \newline + (1 - p(e))u_\pi(s \setminus e)\}$,
8: $u_\pi(s) := -c(e^*) + p(e^*)u_\pi(s \cdot e^*) \newline + (1 - p(e^*))u_\pi(s \setminus e^*)$,
9: $\pi(s) := e^*$.
10: return π
A Simple Greedy Approach

A strategy that tests the edges following the ascending order of costs is an $O(|E|)$ approximation.

Theorem

Given an uncertain graph $G(V, E, p, c)$ and two nodes s and t as source and destination, let π be a strategy that tests the edges in E according to their costs sorted in an increasing order. Then, $\text{Cost}(\pi) \leq |E| \cdot \text{Cost}(\pi^)$, where π^* is the optimal strategy.*
Adaptive Submodular Algorithm – Preliminaries

Definition (Extension)

For two temporary states \(a, b \in S \), we say \(a \) is an extension of \(b \), written as \(a \sim b \) if \(a_i = b_i \) for all \(b_i \neq * \).

Definition (Function on Temporary States)

Let \(g : S \mapsto \mathbb{N} \) be a utility function on temporary states.

- \(g \) is monotonically increasing if \(g(s') - g(s) \geq 0 \) for all \(s \in S, s' \sim s \).

- \(g \) is adaptive submodular if

 \[
 g(s \cdot e) - g(s) \geq g(s' \cdot e) - g(s') \quad \text{and} \quad g(s \setminus e) - g(s) \geq g(s' \setminus e) - g(s') \quad \text{whenever} \quad s' \sim s \quad \text{and} \quad s_e = s'_e = *.
 \]
The utility function g should be assignment feasible in the sense that:

- $g(\ast, \ast, \ldots, \ast) = 0$.
- $g(s) = Q$ iff s is a terminating state, where Q is the target value.

Lemma (The Adaptive Submodular Framework \(^2\))

Each time choosing(testing) the edge with the maximum expected gain:

$$
\frac{p(e)g(s \cdot e) + (1 - p(e))g(s \setminus e) - g(s)}{c(e)}
$$

yields an $O(\ln |Q|)$-approximation.

Adaptive Submodular Algorithm – Utility Function

Definition (The Design of Utility Function g)

Define \mathcal{P} and \mathcal{C} as the collection of s-t paths and s-t cuts in \mathcal{G} respectively. Define \mathcal{P}_e and \mathcal{C}_e as the collection of s-t paths and s-t cuts that edge e lies on in \mathcal{G} respectively. We have,

$$
g_p(s) = \left| \bigcup_{e:s_e=0} \mathcal{P}_e \right|, \quad g_c(s) = \left| \bigcup_{e:s_e=1} \mathcal{C}_e \right|,
$$

$$
g(s) = |\mathcal{P}| |\mathcal{C}| - (|\mathcal{P}| - g_p(s))(|\mathcal{C}| - g_c(s)).
$$

Example

- Set of paths
- Set of cuts
Determine the strategy sequentially

Algorithm 2 The Adaptive Submodular Algorithm

\[\textbf{Input:} \text{ Uncertain graph } \mathcal{G}(V, E, p, c), \text{ source and destination.} \]

\[\textbf{Output:} \text{ Testing strategy } \pi \]

1. \textbf{Initialize:} Current state } s := (*, *, \ldots, *), \text{ The set of tested edges } E_\pi \text{ as an empty set.}
2. \textbf{Repeat} until } s \text{ becomes a terminating state.
3. \quad e^* := \arg \max_{e \in E \setminus E_\pi \setminus \{e^*\}} \left\{ \frac{p(e)g(s \setminus e) + (1 - p(e))g(s \setminus e - g(s))}{c(e)} \right\}.
4. \quad E_\pi := E_\pi \cup \{e^*\}, \text{ test } e^* \text{ and observe the outcome.}
5. \quad \textbf{if} edge } e^* \text{ exists \textbf{then}
6. \quad \quad s_{e^*} := 1
7. \quad \textbf{else}
8. \quad \quad s_{e^*} := 0

Test the edge with the maximum marginal gain
Adaptive Submodular Framework – Performance

Theorem

\(g \) is monotonically increasing, adaptive submodular, and assignment feasible.

Proof:

By the definition of \(g \).

Theorem

The Adaptive Submodular Algorithm yields an \(O(\ln |Q|) = O(\ln |P||C|) \)-approximation.

Proof:

By the Adaptive Submodular framework proposed by Golovin and Krause \(^3\).

\(^3\)D. Golovin and A. Krause, “Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization”
Outline

1. Motivations
2. Problem Formulation
 - Modeling
 - Problem Definition
3. Computational Complexity
4. Proposed Algorithms
 - Exact Algorithm
 - Approximation Algorithms
5. Experiments
Experiment Settings

Experiment Datasets:
- Citation Networks (273751 nodes, 993025 edges)
- Internet Peer to Peer Networks (5000 nodes, 16469 edges)
- Twitter Ego Networks (213 nodes, 17930 edges)

Parameters Assignments:
- Costs: drawn from $\mathcal{N}(50,100)$
- Probabilities: $p(e = (x, y)) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$

Performance Metric:
- The expected costs are approximated by the averaged costs on 1000 underlying graphs.

$^4\Gamma(x)$ denotes the set of neighbors of x.
Algorithms Involved in Comparisons

- Greedy Algorithm (Greedy)
- Adaptive Submodular Algorithm (AdaSub)
- Optimistic Sort Algorithm (OpSort): following an increasing order of c/p
- Pessimistic Sort Algorithm (PeSort): following an increasing order of $c/(1 - p)$
- Intersection Sort Algorithm (IntSort): tests the edge with the minimum cost that lies on the intersection of a shortest s-t path and a minimum s-t cut.
- MDP-based Algorithm (MDP): only on a sequence of subnetworks with 20 edges.
Experiment Results
Thank You!