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Abstract—In this paper, we explore methods to generate
optimal network topologies for wireless sensor networks (WSNs)
with and without obstacles. Specifically, we investigate a dense
network with n sensor nodes and m = nb (0 < b < 1) helping
nodes, and assess the impact of topology on its throughput
capacity. For networks without obstacles, we find that uniformly
distributed sensor nodes and regularly distributed helping nodes
have some advantages in improving the throughput capacity. We
also explore properties of networks composed of some isomorphic
sub-networks. For networks with obstacles, we assume there are
M = Θ(nv) (0 < v ≤ 1) arbitrarily or randomly distributed
obstacles, which block cells they are located in, i.e., sensor nodes
cannot be placed in these cells and nodes’ communication cannot
cross them directly. We find that the overall throughput capacity
is bounded by the transmission burden in areas around these
blocked cells and introduce a novel algorithm of complexity
O(M) to generate optimal sensor nodes’ topologies for any given
obstacles’ distributions. We further analyze its performance for
regularly distributed obstacles, which can be taken to estimate
the lower bound of the algorithm’s performance.

I. INTRODUCTION

Capacity is a fundamental issue in wireless sensor networks
(WSNs). A typical WSN involves little or no infrastructure and
sensor nodes may communicate in an ad hoc manner. In Gupta
and Kumar’s seminal work, they adopt Protocol and Physical
Model to describe a successful transmission and show that
the per-node throughput capacity scales as Θ(1/

√
n log n) in

random networks, and the per-node transport capacity scales as
Θ(1/

√
n) in arbitrary networks, respectively [1]. These results

provide us not only a theoretical bound but also a foundation
in the network optimization and protocol design. Following
their work, extensive research are conduced to understand the
scaling laws in wireless sensor networks better. On the other
hand, in some applications, helping nodes are introduced to
improve the performance, which results in a heterogeneous
network. In heterogeneous networks, access control is studied
in [12], [13], routing protocol is studied in [7], [8], [10],
N. Li et al. studied topology control in [15], P. Li et al.
studied the throughput capacity of networks with rectangular
areas in [16]. Many other schemes such as multicast, multiple-
input multiple-output (MIMO), hierarchical regime and adding
infrastructure are also explored in literatures to improve the
network capacity.

However, most of works above are for networks with
regularly or uniformly distributed sensor nodes. While in
practice, sensor nodes may not be placed uniformly, which
could have a huge impact on network properties, including the
capacity. For example, if lots of nodes are confined in a small

region, it would lead to great interference and deteriorates
the capacity. Also, if nodes are too sparse in a particular
area, communication might get difficult, which also harms
networks’ performance. To the best of our knowledge, only
a few works have dealt with the capacity of networks with
inhomogeneous node density. In [17], [18], [19], [20], [21],
capacity of inhomogeneous clustered networks are analyzed
. Corresponding scheduling and routing schemes to approach
the upper bounds are discussed in [22].

On the other hand, almost all the previous works dealt with
flat network region. While in practice, sensor networks are
often deployed in complex environments, such as battle fields
or mountainous areas, and there are often many obstacles dis-
tributed in the these regions. These obstacles may constrain the
distribution of sensor nodes and the transmission of packets.
For example, in a building monitoring WSN, electromagnetic
wave signal can be attenuated significantly when passing
through furniture, walls or floors, which could have a great
impact on network performance. Another example is WSNs
deployed in a mountainous area, in which both routing strategy
design and deployment of sensor nodes should consider the
constraint of the complex landform. Generally, obstacles have
a negative impact on the network capacity. However, if we
design the network topology appropriately, it could lead to a
noneligible improvement. For example, in building monitoring
WSNs, capacity can be improved if we place less nodes in
areas shadowed by obstacles. Also, in a mountainous region,
if we deploy more nodes in open areas, network capacity can
be much larger than that we put most of them in valleys or
laps.

These motivate us to explore better network topologies for
given network regions, especially for networks with obstacles.
In this paper, we investigate how nodes’ spatial distributions
influence the throughput capacity and explore the optimal
nodes distribution on given conditions. We firstly derive some
useful conclusions on generating the optimal topology for flat
network areas. For networks with obstacles, it’s difficult to
derive a general solution for various obstacles distributions.
However, a feasible algorithm with linear complexity can be
proposed by dividing the whole network region into some
small pieces and dealing with them respectively.

Our main contributions are as follows:
• For networks which consist of many isomorphic sub-

networks, compared with the topology of sub-networks,
the overall network’s topology results in a larger through-
put capacity.



• For networks without helping nodes, uniform sensor
nodes’ distribution is order optimal on maximizing
throughput capacity.

• For networks with uniformly distributed sensor nodes, we
find that regularly distributed helping nodes are optimal
to maximize the network throughput capacity.

• For networks with non-uniformly distributed sensor
nodes, though regularly distributed helping nodes are
no longer optimal, any improvement on helping nodes’
distribution cannot change the throughput capacity on
scale.

• For networks with obstacles, we introduce a novel algo-
rithm of complexity O(M) to generate the optimal sensor
nodes’ topology for any given obstacles’ distribution.

The rest of the paper is organized as follows. Section
II gives the network model. In Section III, we study the
connectivity of networks with different nodes’ distributions.
In Section IV, we derive the throughput capacity of networks
with different topologies. In Section V and VI, we explore
some general properties of network topologies. In Section
VII, we investigate the throughput capacity of networks with
obstacles and introduce an algorithm to generate the optimal
user nodes’ topology for any given obstacles’ distribution. We
finally conclude this paper in section VIII.

II. NETWORK MODEL

In this section,we introduce the heterogeneous wireless
network model, definition of obstacles, routing strategy and
scheduling scheme.

A. Network Components

A heterogeneous wireless network is a dense network with
n user nodes and m = nb (0 < b < 1) helping nodes.
Here, instead of symmetric traffic pattern, we assume that the
network has asymmetric traffic as that defined in [16], i.e.,
all the n user nodes are sources while only nd(0 < d < 1)
user nodes are randomly chosen as destinations. Also, user
nodes can serve as relays if needed. On the other hand, helping
nodes do not have information to transmit or receive and they
only help relay packets from user nodes. According to whether
user nodes’ packets are forwarded by helping nodes, we divide
network traffic into two modes, namely, user mode and helping
mode. In user mode, packets are forwarded only by user
nodes. While in helping mode, packets are firstly transmitted
to the nearest helping nodes, and then forwarded to intended
destinations in the helping network. Meanwhile, we assume
that all the user nodes have a total bandwidth of 1 and split it
into three parts as follow

W1 +W2 +W3 = 1

where W1, W2 and W3 are for ad hoc transmissions in user
mode, uplink transmissions in helping mode and downlink
transmissions in helping mode, respectively. Besides, we as-
sume that ad hoc transmissions in helping network have an
independent bandwidth of W4 = Ω(1).

B. Definition of Obstacles

To describe networks with obstacles, we assume the network
area is partitioned into K = Θ(nw) (0 < w ≤ 1) cells. When
there is no user node distributed in a cell, we assume at the
cell’s center there is a relay working in the same bandwidth as
user nodes, which keeps the network’s connectivity. Assume
there are M = Θ(nv) (0 < v ≤ w) number of obstacle nodes
in the network area, which can be arbitrarily or randomly
distributed. Cells are blocked when there are obstacle nodes in
them. Here, “blocked” has two implications: no user node can
be distributed in blocked cells and communications between
user nodes cannot cross them.

C. Interference Model

To bound the interference between different nodes, we
suppose the system is based on a cellular network model.
Assume that the network is an unit square and we divide it into
non-overlapping cells with equal size. Nodes can communicate
with each other only when they are in the adjacent cells. Fur-
thermore, we assume that communications between different
cells has taken time division multiplexing (TDMA) scheme.
Therefore, to avoid interference between adjacent cells, we
adopt a rotating scheduling scheme as that described in [16].
Thus, at the same time, in all of the adjacent cells there is at
most one that can transmit or receive packets and each cell
has the same opportunity to be active.

Following the power propagation model introduced in [23],
the reception power at node Xj of the signal from node Xi is

Pij = C
Pi

dγij
(1)

where dij is the distance between node Xi and node Xj and
Pi is the power emitted by node Xi. According to Shannon
Theorem, the achievable transmission rate Rij from node Xi

to node Xj is:

Rij = W log(1 + SINRij) (2)

where W is the channel bandwidth, and SINRij =
C

Pi
d
γ
ij

N+
∑

k ̸=i C
Pk
d
γ
kj

is the Signal-to-Interference and Noise Ratio

of the transmission from node Xi to node Xj . In this paper
we assume that all of the user nodes and all of the helping
nodes adopt the same transmission power, respectively. As it
derived in [16], we have the following lemma.

Lemma 1. Each cell in the network can transmit at a transmis-
sion rate c1W1, where c1 is a deterministic positive constant.

D. Routing Strategy

As user nodes can only communicate with nodes in neigh-
boring cells, packets from source nodes may need to be for-
warded through multi-hop transmissions to reach destination
nodes. Thus, for networks with and without obstacles, we
adopt following routing strategies, respectively.

Routing Strategy I - for networks without obstacles:
Suppose a source node is located in cell Si and its destination
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Fig. 1. Coordinate system for the network region

is located in cell Sj . Packet sent from the source node firstly
be forwarded along the cells in the same vertical line of cell Si

until it get the cell in the same horizontal line of cell Sj , then
the packet is forwarded along the cells in the same horizontal
line of cell Sj until it reaches the destination node.

Routing Strategy II - for networks with obstacles:
1) If packet sent from the source node can be relayed to its

destination by Routing Strategy I, do it.
2) Otherwise, if there are only convex obstacles polygons,

firstly forward the packet along the routing path gener-
ated by Routing Strategy I. When it can no longer be
forwarded in current direction (vertical or horizontal),
change the forwarding direction to another one (hori-
zontal or vertical). Repeat this until it arrives at the
destination node.

3) If there exist concave polygons obstacles and neither of
the source node and the destination node are in the groove
of a concave obstacles polygon, replace the concave
obstacles polygons by their convex hulls, respectively,
and then following Step 1) and 2) to forward the packet.

4) If source and destination nodes (or either of them) are in
the grooves of concave obstacles polygons, we can find
cells outside the corresponding convex hulls and nearest
to source and destination nodes, respectively. Denote
them by SA and SB , respectively. We firstly transmit the
packet from the source node to cell SA, then following
Step 1), 2) and 3) to forward this packet from cell SA to
cell SB , and finally we forward the packet from cell SB

to the destination node.

E. Network Topology

We first established coordinate system for the network
region. As shown in Fig. 1, the coordinate origin is located at
the center of the network. As the edge length of the network
region is 1, the maximal scales of x-axis and y-axis are both
1/2.

1) Uniform Distribution: For networks with uniformly dis-
tributed nodes, the probabilities that nodes located at any place

Fig. 2. Centralized distribution networks

of the network is the same with each other, i.e., it has following
probability density function: f(x) = 1 (−1

2 < x < 1
2 )

f(y) = 1 (−1
2 < y < 1

2 )
(3)

2) Centralized Distribution: We first consider a simple case
of the non-uniform distribution. As shown in Fig. 2, nodes
density is large in the center of the network and small at the
edge. We call it “centralized distribution”. One of its possible
probability density functions can be shown as follows: f(x) = (4a− 4)x+ 2− a (−1

2 < x < 1
2 )

f(y) = (4a− 4)y + 2− a (−1
2 < y < 1

2 )
(4)

where a (0 ≤ a ≤ 1) is centralization coefficient and its
value determines the extension that network nodes aggregate
to the center. The larger a is, the more uniform the nodes
are distributed, or vice versa. In particular, when a = 1
are uniformly distributed; when a = 0 probability of nodes
distributed at the edge of the network would become 0.

3) Multi-centralized Distribution: In practice, network
nodes often aggregate in several locations of the network, not
just the center of the network. We call it “multi-centralized
distribution”. As shown in Fig. 3, We can divide the whole
network into many small sub-network according to the ag-
gregation centers and each sub-network has similar network
topology. In this paper, we assume that all the sub-network is
a small centralized distribution network as defined before, i.e.,
it satisfied the probability density function shows in (4).

III. NETWORK CONNECTIVITY

In this section, we analyze the smallest cell size that can
keep the network connectivity.



Fig. 3. Multi-centralized distribution networks

A. Uniform Network

For uniformly distributed nodes, network connectivity has
been adequately researched in various literatures, here we only
give some brief results.

Lemma 2. For uniformly distributed nodes, if we divide the
network area into cells of length l =

√
c2 log n

n , where c2 > 1
is a constant, each cell has at least one node w.h.p. [24].

B. Centralized and Multi-centralized Network

For multi-centralized network, because each of its sub-
network is a small centralized network, we only need to
discuss the connectivity of centralized distribution network.

For centralized network, we have the following lemma:

Lemma 3. For centralized, if cell’s length satisfies the follow-
ing condition, the network is connected w.p.h..

l ≥


−a+

√
a2 + 8(1− a)

√
c3 logn

n

4(1− a)
when 0 ≤ a < 1√

c3 log n

n
when a = 1

(5)
where c3 is a deterministic constant.

Proof: Different from uniform network, in non-uniform
network, probabilities that nodes distributed in different cells
are not the same. For network satisfying probability density
function (4), if there is at least one node in cells located in the
corners, there must be at least one node in every cell w.h.p..

For centralized network, the joint probability density func-
tion is

f(x, y) = [(4a− 4)x+ 2− a] · [(4a− 4)x+ 2− a] (6)

where −1/2 < x < 1/2 and −1/2 < y < 1/2. Without loss
of generality, we consider the cell S in the the upper right

corner, for a user node Xi, the probability that it is in cell S,
is

Pi =

∫ 1
2

1
2−1

∫ 1
2

1
2−1

[(4a− 4)x+ 2− a]

·[(4a− 4)x+ 2− a]dxdy

= ((2a− 2)x2 + (2− a)x) |
1
2
1
2−1

·((2a− 2)y2 + (2− a)y) |
1
2
1
2−1

= (al − 2(a− l)l2)2

Denote the probability that there is at least one node in cell
S by PS , when n → ∞, we have

PS = 1− (1− Pi)
n → 1− e−nPi (7)

when Pi satisfy

Pi ≤
c3 log n

n
(8)

we can get

PS ≤ 1− 1

n2
(9)

i.e., PS → 1 as n → ∞. Put (8) into (7), we can get

(al − 2(a− l)l2)2 ≤ c3 log n

n
(10)

Solving this function and considering that 0 < l < 1, we can
obtain

l ≥


−a+

√
a2 + 8(1− a)

√
c3 logn

n

4(1− a)
when 0 ≤ a < 1√

c3 log n

n
when a = 1

Conclusions for multi-centralized distribution network is
similar to Lemma 3. From Lemma 3, it’s not difficult to get
the following corollary.

Corollary 1. For centralized network defined by (4), if l =
4

√
c3 log n

n , for any 0 ≤ a ≤ 1, there is at least one node in
each cell w.h.p.

IV. THE THROUGHPUT CAPACITY OF HETEROGENEOUS
WIRELESS NETWORKS WITHOUT OBSTACLES

In this section, we explore a lower bound on the throughput
capacity of heterogeneous wireless networks without obstacles
by deriving the achievable per-node throughput. We further
divide the communication process under helping mode into
three phases as that in [16]: First, packets are sent from the
source node to the nearest helping node, then forwarded in
the helping-network until it reaches the helping node nearest
to the destination, and in the final phase packet is transmitted
from that helping node to the destination node. We analyze
the throughput capacity user mode and the three phases of
helping mode. Denote achievable per-node throughput in user
mode and helping mode by Tu and Th, respectively. Thus, the



achievable per-node throughput of the heterogeneous wireless
networks, denoted by T , can be calculated as follows:

T = max{Tu, Th} (11)

where
Th = min{Th1, Th2, Th3} (12)

Here, Th1, Th2, Th3 are achievable per-node throughput in the
three phases of helping mode. In this section, we assume that
all the helping nodes are placed regularly and only investigate
the impact of the user nodes’ topology. The impact of helping
nodes’ topology will be studied in the following sections.

A. Uniform Network

As the uniform network we proposed above is a special
case of that in [16], which assumed the network placed in
a rectangular area, here we only give the derivative results
briefly.

Theorem 1. An achievable throughput in uniform networks,
denoted by Tuniform, is

Tuniform = Ω

(
max

{
min

{
1√

n log n
, nd−1

}
,

min
{
n

b
2−1, nd−1

}})
(13)

B. Centralized Network

To facilitate the calculation, here we will only consider the
case that centralization coefficient is 0, i.e., the density of
nodes in the center goes to the maximum. Moreover, results
of such extreme case are also easier for us to compare with
that of the uniform network. When a = 0, probability density
function given in (4) becomes f(x) = −4x+ 2 (− 1

2 < x < 1
2 )

f(y) = −4y + 2 (− 1
2 < y < 1

2 )
(14)

Additionally, due to the non-uniformity, properties of the
network are related to cells’ locations. As shown in Fig.
4, we number the rows and columns by integrates and let
S(i, j) : i, j = ±1,±2, . . . ,±1

2 denote the cell located in
the ith column and the jth row. If the number of rows or
columns is odd, the numbering of cells should start from 0,
i.e., i, j = 0,±1,±2, . . . ,±1

2 . From the following derivation,
we can see that the starting value of the numbering is irrelative
to the result.

1) Achievable Throughput in User Mode: Let N i
x and N j

y

denote the number of source nodes located in the same column
of S(i, j) and the number of destination nodes located in the
same row of S(i, j), respectively. Thus, we have

E[N i
x] = n ·

∫ il

(i−1)l

f(y)dy

= n · (−2y2 + 2y)
∣∣∣il(i−1)l

= n · (−4il2 + 2l2 + 2l) (15)

x

y

1/2

-1/2

O

1 2 ……

1

-1

-1

2

-2

-2……

…
…

…
…

-1/2

1/2

Fig. 4. A numbering of cells

Similarly,

E[N j
y ] = n ·

∫ jl

(j−1)l

f(x)dx

= n · (−4jl2 + 2l2 + 2l) (16)

According to Corollary 1, we have

E[N i
x] = 2n(−2i+ 1)

(
c3 logn

n

) 1
2

+ 2n
(

c3 logn
n

) 1
4

E[N j
y ] = 2nd(−2j + 1)

(
c3 log n

n

) 1
2

+ 2nd
(

c3 logn
n

) 1
4

Recall the Chernoff bounds, we can obtain the following
lemma.

Lemma 4. For each cell, w.h.p.,

1) The number of source nodes which are located in
cells with the same x-coordinate is at most 4n(−2i +

1)
(

c3 log n
n

) 1
2

+ 4n
(

c3 logn
n

) 1
4

.

2) The number of destination nodes located in cells with the

same y-coordinate is at most 4nd(−2j+1)
(

c3 log n
n

) 1
2

+

4nd
(

c3 log n
n

) 1
4

when 1/4 < d < 1, and at most c4 when

0 < d < 1/4, where c4 is a constant and c4 > 2
1−4d .

Techniques used to prove Lemma 4 is similar to that of
Lemma 3 in [16] and we would not discuss them in details
here. Interest reader can refer to [16].

On the other hand, according to [16], for the network with
n source nodes and nd destination nodes, we also have

Lemma 5. For each destination node, w.h.p., there are at most
2n1−d source nodes destined to it [16].

Let F ij
k denote the number of data flows crossing cell



S(i, j). For each cell, we have

F ij
k ≤ N i

x + 2n1−dN j
y

≤



4n(−2i+ 1)
(

c3 log n
n

) 1
2

+ 4n
(

c3 logn
n

) 1
4

+2n1−d

[
4nd(−2i+ 1)

(
c3 logn

n

) 1
2

+4nd
(

c3 log n
n

) 1
4

]
when 1

4 < d < 1

4n(−2i+ 1)
(

c3 log n
n

) 1
2

+ 4n
(

c3 logn
n

) 1
4

+2c4n
1−d when 0 < d < 1

4

(17)

Notice that the left part of (17) are monotonically decreasing
functions, we have

F ij
k,max = F 11

k

=



9n

[(
c3 logn

n

) 1
4 −

(
c3 log n

n

) 1
2

]
when 1

4 < d < 1

4n

[(
c3 logn

n

) 1
4 −

(
c3 log n

n

) 1
2

]
+ 2c4n

1−d

when 0 < d < 1
4

i.e.,

F ij
k,max = O

(
max

{
n ·
(
log n

n

) 1
4

, n1−d

})
(18)

Form Lemma 1, each cell can achieve a constant transmission
rate. Denote the achievable throughput in user mode by
T central
n , from (18), we can obtain that

T central
n = Ω

(
min

{
n−1 ·

(
n

log n

) 1
4

, nd−1

})
(19)

2) Achievable Throughput in Helping Mode: Recall that
we have divided communication in helping mode into three
phases, in this section we derive the throughput capacity in
these three phases, respectively, and synthesize them to get
the achievable throughput in helping mode.

Phase I: transmit from sources to the helping nodes
Since helping nodes are regularly placed, we can re-divide

the network into m cells of length l =
√
1/m = n− b

2 . Then
we can obtain the following lemma.

Lemma 6. There are at most 8n
(
−n−b + n− b

2

)2
user nodes

in each cell.

Proof: Denote the number of user nodes located in cell
S(i, j) by random variable Nij . Thus, the expectation of Nij

is

E[Nij ] = n ·
∫ il′

(i−1)l′

∫ jl′

(j−1)l′
f(x)f(y)dydx

= n
[
(−4i+ 2)n−b + 2n

b
2

]
·
[
(−4j + 2)n−b + 2n

b
2

]
(20)

Notice that the left part of (20) is monotonically decreasing
function, thus we have

E[Nij ]max = E[N11] = 4n
(
−n−b + n− b

2

)2
(21)

Similar to the proof of Lemma 4, we can easily show that
P (Nij ≤ 2E[Nij ]max ∀ Sij) → 1 as n → ∞.

Let T central
h1 denote the achievable throughput in phase I.

We can obtain that

T central
h1 = Ω

 W2

8n
(
−n−b + n− b

2

)2
 = Ω(nb−1) (22)

Phase II: forwarding in helping network
Notice that packets forwarding in helping network is also

ad hoc transmission. Similarly, we can obtain the following
lemmas.

Lemma 7. Each cell in the network can transmit at a transmis-
sion rate c5W4, where c5 is a deterministic positive constant.

Lemma 8. For every cell, w.h.p.,

1) There are at most 4n
(
(−2i+ 1)n−b + n− b

2

)
source

nodes located in the same column.
2) The number of destination nodes located in the same row

is at most 4nd·
(
(−2j + 1)n−b + n− b

2

)
when d > b

2 , and

at most c6 when d < b
2 , where c6 is a constant

Thus, Similar to the derivation of achievable throughput
capacity in user mode, we can obtain the throughput capacity
in phase II, denoted by T central

h2 , as follows

T central
h2 = Ω

(
max

{
n

b
2−1, nd−1

})
(23)

Phase III: transmitting from the helping nodes to destina-
tions

For the re-divided network in helping mode, we have the
following lemma.

Lemma 9. For centralized distribution network, in each cell,
w.h.p., there are at most 8nd

[
−n−b + n− b

2

]2
destination

nodes when 0 < b < d < 1, and at most c7 when
0 < d < b < 1, where c7 > b

b−d

Proof: Denote the number of destination nodes located
in cell S(i, j) by random variable Dij . Thus, the expectation
of Dij is

E[Dij ] = nd ·
∫ il′

(i−1)l′

∫ jl′

(j−1)l′
f(x)f(y)dydx

= nd
[
(−4i+ 2)n−b + 2n

b
2

]
·
[
(−4j + 2)n−b + 2n

b
2

]
≤ 4n

(
−n−b + n− b

2

)2
(24)

Similar to the proof of Lemma 4, we can easily show that

P (Dij ≤ 8nd
[
−n−b + n− b

2

]2
] ∀ Sij) → 1 as n → ∞.



Similar to Lemma 1, we can obtain that transmissions in
Phase III can also achieve a constant transmission rate c8W3,
where 0 < c8 < ∞ is a deterministic constant. Furthermore,
we find that w.h.p. the number of data flows from each helping

node to its destination nodes is at most 8nd
[
−n−b + n− b

2

]2
×

2n1−d = Ω
(
n1−b

)
when 0 < b < d < 1, and at most c8 ×

2n1−d = 2c8n
1−d when 0 < d < b < 1. Then, we can obtain

the throughput capacity in phase III, denoted by T central
h3 , as

follows

T central
h3 =

 Ω(nb−1) when 0 < b < d < 1

Ω(nd−1) when 0 < b < d < 1
(25)

Combining (22), (22) and (22), we can get

T central
h = Ω

(
min

{
n

b
2−1, nd−1

})
(26)

Substituting (19) and (26) into (12), we can get the following
theorem

Theorem 2. An achievable throughput in centralized distri-
bution networks, denoted by T central, is

T central = Ω

(
max

{
min

{
n−1 ·

(
n

log n

) 1
4

, nd−1

}
,

min
{
n

b
2−1, nd−1

}})
(27)

C. Multi-centralized Network

Following similar trace of derivation, we can obtain the
following theorem.

Theorem 3. An achievable throughput in multi-centralized
distribution networks, denoted by Tmulti, is

Tmulti = Ω

(
max

{
min

{
k

n
·
( n

k2

log n
k2

) 1
4

, nd−1

}
,

min
{
kn

b
2−1, nd−1

}})
(28)

Proof: We also need to find an achievable throughput
in user mode and helping mode, respectively. An achievable
throughput in in multi-centralized distribution networks can be
obtain by choosing the maximum.

1) user mode
For multi-centralized distribution network, in every sub-
network, there are n/k2 nodes. Thus, in user mode, cells’

length is 1
k · 4

√
c3

n
k2

log n
k2

. Similar to that in section IV-B (1),

we can obtain that

Tmulti
n = min

{
k

n
·
( n

k2

log n
k2

) 1
4

, nd−1

}
2) helping mode

The cell length in helping mode is still
√

1
m , however,

the area of each centralized sub-network is only 1
k2 . Thus,

the relative coverage of each cell is increased. Similar to
that in section IV-B (2), we can obtain that

Tmulti
h1 = Ω

 W2

8 n
k2

(
−k2 · n−b + k · n− b

2

)2


= Ω
(
nb−1

)
Tmulti
h2 = Ω

min

 c5W4

9k · n
k2

(
−n−b + n− 2

b

) , nd−1




= Ω
(
min

{
kn

b
2−1, nd−1

})
Tmulti
h3 =

 Ω(nb−1) when 0 < b < d < 1

Ω(nd−1) when 0 < b < d < 1

Thus, an achievable throughput in multi-centralized distribu-
tion networks is

Tmulti = Ω

(
max

{
min

{
k

n
·
( n

k2

log n
k2

) 1
4

, nd−1

}
,

min
{
kn

b
2−1, nd−1

}})

V. GENERAL PROPERTIES OF “COMBINED NETWORKS”

From the results in section IV, we can see that compared to
sub-networks of the same network scales, the overall networks
has a larger achievable throughput. Here, “scale” means the
size of network area, number of nodes and size of cells.

To explain this phenomenon, we can divide the impacts of
combination into two categories:

1) The interference of different sub-networks
2) Flows passing across different sub-networks
For impact 1), from the proof of Lemma 1 in [16], we can

see that since in one time slot in each cell there is only one
node that can transmit packet, the interference between cells
is only relative to the size of cells and irrelative to the number
of nodes in it. Thus, the interference in combined network is
the same to that in sub-networks of the same scales.

Impact 2) is not so easy to explore, however, from the
derivation in section IV, we can see that the achievable
throughput of the network is bounded by the busiest cells,
and the transmission burden of the busiest cells is further
determined by the cells with the largest nodes density. Thus,
we can obtain the following Theorem.

Theorem 4. For network composed of some isomorphic sub-
networks, the throughput capacity of the overall network,
denoted by T̃ , and the throughput capacity of sub-network
of same network scales, denoted by ˜̃T , have the following
relationship.

T̃ ≥ ˜̃
T (29)

Proof: Firstly, we give the abstract expression of the
derivation of the network throughput capacity.



1) In user mode, let Nx,max and Ny,max denote the maximal
number of source nodes located in cells with the same x-
coordinate, and the maximal number of destination nodes
located in cells with the same y-coordinate in the sub-
network, respectively. Thus, the maximal number of flows
cross a cell, denoted by Fij,max, is

Fij,max = Nx,max + 2n1−dNy,max (30)

Thus, the achievable throughput in user mode is

Tu =
c1W1

Fij,max
(31)

2) In helping mode, let Cmax, Dmax, N ′
x,max and N ′

y,max

denote the maximal number of source nodes in one cell,
the maximal number of destination nodes in one cell,
the maximal number of source nodes located in cells
with the same x-coordinate, and the maximal number
of destination nodes located in cells with the same y-
coordinate in the sub-network, respectively. Following the
trace of derivation in section IV, we have

• In the first phase

Th1 =
c5W2

Cmax
(32)

• In the second phase

F ′
ij,max = N ′

x,max + 2n1−dN ′
y,max (33)

Th2 =
W4

F ′
ij,max

(34)

• In the third phase

Th3 =
c6W3

Dmax
(35)

From above, we can see that the achievable throughput of a
network without obstacles is determined by the cells and rows
of the largest nodes density, i.e., by variables Nx,max Ny,max,
Cmax, Dmax, N ′

x,max and N ′
y,max.

For the combined network consisting of k×k sub-networks,
denote the corresponding variables by (̃·). We have

C̃max = Cmax

D̃max = Dmax

Ñx,max = kNx,max

Ñy,max = kNy,max

Ñ ′
x,max = kN ′

x,max

Ñ ′
y,max = kN ′

y,max

(36)

Furthermore, we have

F̃ij,max = Ñx,max + 2n1−dÑy,max

= kNx,max + 2n1−dkNy,max

= kFij,max (37)

Similarly, we have

F̃ ′
ij,max = kF ′

ij,max (38)

Substituting (36), (37) and (38) into (31), (32), (34) and (35),
we can obtain that

T̃n =
ĉ1W1

F̃ij,max

=
ĉ1W1

kFij,max

T̃h1 =
ĉ5W2

C̃max

=
ĉ5W2

Cmax

T̃h2 =
W4

F̃ ′
ij,max

=
W4

kF ′
ij,max

T̃h3 =
ĉ6W3

D̃max

=
ĉ6W3

Dmax

Similarly, for sub-network of the same scales as the overall

network, denote the corresponding variables by
˜̃
(·). We have˜̃

Tn =
ĉ1W1˜̃

F ij,max

≤ ĉ1W1

k2 · 1
k · Fij,max

= T̃n

˜̃
Th1 =

ĉ5W2˜̃
Cmax

≤ ĉ5W2

k2 · 1
k2 · Cmax

= T̃h1

˜̃
Th2 =

W4˜̃
F

′

ij,max

≤ W4

k2 · 1
k · F ′

ij,max

= T̃h2

˜̃
Th3 =

ĉ6W3˜̃
Dmax

≤ ĉ6W3

k2 · 1
k2 ·Dmax

= T̃h3

Thus, we can obtain that

T̃ = max{T̃n, T̃h}
= max{T̃n,min{T̃h1, T̃h2, T̃h3}}

≥ max{ ˜̃Tn,min{˜̃Th1,
˜̃
Th2,

˜̃
Th3}}

=
˜̃
T (39)

VI. IMPACT OF NETWORK TOPOLOGY ON THROUGHPUT
CAPACITY

A. Impact of User Nodes’ Topology

Comparing the results in section IV with each other, we
can find that achievable throughput of networks with the three
different topologies have similar scales (take k as a constant).
In general, we have the following theorem.

Theorem 5. For the topology of user nodes, if the value range
of nodes distribution’s probability density function (PDF) is
limited, the gap in achievable throughput of non-uniform
networks and uniformly networks is at most a constant time.



Proof: Firstly, from the analysis in section V, we can see
that if size of cells stay unchanged, the interference between
cells can not be changed by network topologies. Secondly, in
the proof of Theorem 4, we have conclude that for networks
without obstacles the achievable throughput is determined by
cells and rows of the largest nodes density, i.e., by variables
Nx,max Ny,max, Cmax, Dmax, N ′

x,max and N ′
y,max. Let

Nx,max and N̂x,max denote the the maximal number of source
nodes located in cells with the same x-coordinate in uniform
and non-uniform, respectively. Since the value range of the
nodes distribution’s PDF is limited, i.e., ∃M ∈ R+, for ∀ x, y
we have |f(x)| ≤ M, |f(y)| ≤ M . Thus, we have

E[Nx] = n · l
1

(40)

E[N̂ i
x] = n ·

∫ il

(i−1)l

f(y)dy

≤ n ·
∫ il

(i−1)l

Mdy

= Mnl

= ME[Nx]

Using Chernoff Bounds, we can prove that w.h.p. Nx ≤
2E[Nx] and N̂ i

x ≤ 2E[N̂ i
x]. Thus, we have

N̂x,max ≤ MNx,max (41)

Similar results can be proved for Ny,max, Cmax, Dmax,
N ′

x,max and N ′
y,max. Denoted the achievable throughput in

uniform and non-uniform network by T and T̂ , respectively.
Following the trace of derivation in Theorem 4’ proof, we can
conclude that

T ≤ C(M)T̂ (42)

where C(M) is a constant relative to M .

B. Impact of Helping Nodes’ Topology

In the above analysis, we have only considered regularly
distributed helping nodes. In this subsection, we explore the
impact of different helping nodes’ distributions. In general, we
have the following theorem.

Theorem 6. For networks with uniformly distributed user
nodes, regularly distributed helping nodes are optimal to
maximize the network throughput capacity.

Proof: Firstly, we analyze the impact of helping nodes’
distribution on interference. In network with non-uniformly
distributed helping nodes, cells’ sizes in helping mode are also
different. Let l′ denote length of cells in network with regularly
distributed helping nodes and l′′max denote the maximal length
of cells of network with non-uniformly distributed helping
nodes, respectively. We can easily obtain that l′′max ≥ l′.
Denote the achievable rate of cells in networks with regu-
larly and non-uniformly distributed network by W ′ and W ′′,
respectively. From the derivation of Lemma 1, we can obtain
that W ′ ≥ W ′′.

Secondly, according to the proof of Theorem 4, achievable
throughput in helping mode is determined by variables Cmax,
Dmax, N ′

x,max and N ′
y,max. Let C ′

max, D′
max, N ′

x,max and
N ′

y,max denote the corresponding variables in network with
regularly distributed helping nodes, and C ′′

max, D′′
max, N ′′

x,max

and N ′′
y,max denote corresponding variables in network with

regularly distributed helping nodes, respectively. In networks
with non-uniformly distributed helping nodes, there must be
some cells of length larger than the average value. Thus, we
can obtain that 

C ′′
max > C ′

max

D′′
max > D′

max

N ′′
x,max > N ′

x,max

N ′′
y,max > N ′

y,max

(43)

Denote the achievable throughput capacity of network with
regularly and non-uniformly distributed network by T ′ and T ′′,
respectively. Since that throughput capacity in helping mode
is inversely proportional to these variables, from above we can
obtain the following conclusion

T ′ ≥ T ′′ (44)

Theorem 7. For networks with non-uniformly distributed user
nodes, though regularly distributed helping nodes topology is
no longer optimal, any improvement on the helping nodes’
topology cannot change the network throughput capacity on
scale.

Proof: Firstly, considering interference, according to the
proof of Theorem 6, non-uniformly distributed helping nodes
can only increase the interference between cells and decrease
the achievable rate of cells. Thus, it has a negative impact on
the network throughput capacity.

Secondly, if we do not consider change of interference,
network throughput capacity in helping mode is determined
by variables Cmax, Dmax, N ′

x,max and N ′
y,max. Thus, if

we change the helping nodes’ topology, network throughput
capacity will achieve the maximal value when each cell has the
same number of nodes. However, similar to that in the proof
of Theorem 5, we can easily show that this improvement is
not larger than a constant time.

Combining conclusions above together, we can conclude
that improvement on the helping node topology cannot change
the network throughput capacity on scale.

VII. OPTIMAL TOPOLOGY FOR NETWORKS WITH
OBSTACLES

In this section, we introduce a novel algorithm to generate
the optimal network topology for any given obstacles distri-
butions and analyze its performance.



}

Fig. 5. A wall with gate in the network area

A. Algorithm to Obtain the Optimal Network Topology

To design the optimization algorithm, we first consider a
simple scenario. As shown in Fig. 5, assume that there is a
“wall” with a “gate” in the network, which divides the network
area into two parts. In this case, the area around the gate is
the “hot spot” and the bottleneck of the network achievable
throughput since any data flow passing from one side of the
wall to another side must pass through the gate. To maximize
the network throughput capacity, we can minimize the trans-
mission burden of this area by the following algorithm.

Algorithm - “Wall with Gate”:
1) Assume that there are n̂, n1 and n2 number of nodes in

the gate area, the left and the right part of the network, re-
spectively, where n̂+n1+n2 = n. The expect number of
data flows passing through the gate is u = f(n̂, n1, n2),
where function f(·) can be decided using the methods
given in Section IV. Thus the transmission burden of the
gate area is B0 = u/k0, where k0 is the number of cells
in the gate area (the nodes’ distribution in the gate area is
assumed to be uniform since this area is relatively small).

2) Ignore the wall and the right part of the network. Put
φ1 = gs(n̂, n1, n2) number of virtual source nodes and
ϕ1 = gd(n̂, n1, n2) number of virtual destination nodes
uniformly in front of the gate (i.e., the area illustrated in
Fig. 5) to replace the ignored user nodes. Virtual source
and destination nodes work as sources and destinations,
respectively, generating virtual date flows. Functions gs(·)
and gd(·) are determined by the routing strategy so that
this number of virtual nodes have the same influence on
the left part of the network as the ignored parts.1 Then
we obtain a degraded sub-network without any obstacles.

3) For the degraded sub-network, use methods and conclu-
sions given in Sections IV - VI to generate an optimal
topology T1 = T1(n̂, n1, n2) and calculate the corre-
sponding transmission burden B1 = h1(n̂, n1, n2).

4) Repeat Step 2 and 3 to the right part of the net-
work, respectively. Generate the optimal topology T2 =

1For the routing strategy given in Section II, we can let gs(n̂, n1, n2) =
n1n2/n and gd(n̂, n1, n2) = n1n2/n, respectively.
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Fig. 6. Divide the network by walls - Method I

T2(n̂, n1, n2) and calculate the transmission burden B2 =
h2(n̂, n1, n2).

5) Use appropriate optimization methods to minimize the
cost function B = max(B0, B1, B2). Calculate corre-
sponding n̂, n1 and n2. Since the topologies obtained in
Step 3 and 4 are functions of n̂, n1 and n2, the optimal
topology for the whole network can thus be determined
by combining T1 and T2.

This “Wall with Gate” algorithm can be generalized to
obtain optimal topology for any given networks with obstacles.
Firstly, divide the network area into pieces by the following
method.

Divide the network by walls - Method I: As shown in Fig.
6, take blocked cells in a row (vertical or horizontal) as a
wall and cells without obstacles in this row as gates. Then the
network is divided into some sub-networks by these walls.

The optimal topology for this network area can be obtained
by applying “Wall with Gate” algorithm to each of these sub-
networks and gate areas. Note that since the gate areas here
might be relatively large, nodes distribution in these areas can
no longer be assumed to be uniform and Step 2 - 3 must
be applied to these gate areas. Denote the optimal network
topology by T, assume that there are S sub-networks and R
gates, we have

T = T (n1, n2, . . . , nS , n̂1, n̂2, · · · , n̂R, )

= {T1, . . . ,T2,TS , T̂1, . . . , T̂2, T̂R}

where ni, i = 1, 2, . . . S is the number of user nodes in the ith
sub-network, n̂j , j = 1, 2, . . . R is the number of user nodes
in the jth gate area, Tk, k = 1, 2, . . . S is the optimal topology
of the kth sub-network and T̂l, l = 1, 2, . . . R is the optimal
topology of the lth gate area.

B. Complexity of the Algorithm

Noticing that the algorithm complexity is proportional to the
number of sub-networks S and number of gates R, to decrease
the algorithm complexity, we can simplify the division of the
network area. Note that in Fig. 6, sub-networks I - IV can
be combined into a larger sub-network, so do sub-networks V



Fig. 7. Divide the network by walls - Method II

Cell I

Fig. 8. Cell I add four gates to the divided network

- V I , V II - V III , IX - XII and XIII - XV I . We can
modify the network dividing method as follows.

Divide the network by walls - Method II: As shown in Fig.
7, first construct a wall in the row (either vertical or horizontal)
with the most number of blocked cells, dividing the network
area into two parts. For each part, repeat this step iteratively
until all the blocked cells are crossed by at least one wall.

The complexity of the algorithm is given by the following
lemma.

Lemma 10. The algorithm complexity is O(M2) when using
network dividing method I and is O(M) when using method
II.

Proof: Here we consider the worst cases, i.e., the cases
that all cells with obstacles are not collinear. When using
method I to divide the network area, there are 2M walls.
Denote the number of sub-networks and number of gates by
SI and RI , respectively. In the worst case, these 2M walls
divide the network into M2 areas, i.e., SI = M2. Since there
is a gate between any neighboring sub-network areas, there
are at least 4 ∗M2/2 gates, i.e., RI = 2M2. So the algorithm
complexity is

ηI = O(SI +RI) = O(M2) (45)

Fig. 9. Data flows in network with regularly distributed obstacles

When using method II, each cell with obstacles generate at
most one wall, so there are at most M walls. Denote the
number of sub-networks and number of gates by SII and RII ,
respectively. These walls divide the network into M+1 areas,
thus, SII = M + 1. Furthermore, as shown in Fig. 8, each
cell with obstacles can generate at most four additional gates
to the network, i.e., RII ≤ 4M . So the algorithm complexity
is

ηII = O(SII +RII) = O(M) (46)

Although method I generate more sub-networks, each sub-
network is relatively simple and easy to analyze. In some
particular cases, for example, in the case that the obstacles’
distribution has some symmetry properties, using method I
might result in a smaller algorithm complexity.

C. Performance of the Algorithm for Network with Regularly
Distributed Obstacles

Generally, the more uniform the obstacles’ distribution is,
the larger the achievable throughput is, and thus the less
room for improvement there is. Therefore we take regular
obstacles distribution, one of the most uniform distributions,
as an example to estimate the lower bound of the algorithm
performance.

1) Achievable throughput of network with uniformly dis-
tributed user nodes: Since obstacle nodes are regularly dis-
tributed, cells blocked by obstacles are also regularly dis-
tributed. Denote the number of blocked cells by M. To keep
the network connectivity, we have M ≤ K

4 and M = M . As
shown in Fig. 9, the marked cells are the busiest ones in the
network since they have to relay extra data flows from or to the
nodes located in the adjacent columns or rows, respectively.
Denote the number of data flows that cross the ith (1 ≤ i ≤ K)
cell by Fi. Following similar trace of derivation in Section IV,



we can obtain that for all i

Fi ≤



6
(
1 + C

√
K−

√
M√

K

)
· n
K−M ·

√
K

when w
2 < d < 1(

1 + C
√
K−

√
M√

K

)(
2n

K−M ·
√
K

+4c9n
1−d
)

when 0 < d < w
2

(47)

where c9 is a deterministic constant, C = 1/2 when M < K/4
and C = 1 when M = K/4. The achievable throughput is
Tr = c1W1/Fi. For comparison, in network without obstacles,
the number of data flows that cross the ith cell, denoted by
F̂i, is

F̂i ≤

 6 n√
K when w

2 < d < 1

2 n√
K + 4c9n

1−d when 0 < d < w
2

(48)

The corresponding achievable throughput is T̂ = c1W1/F̂i.
Considering that n

K−M ·
√
K = o(n1−d) and n√

K = o(n1−d)

when 0 < d < w/2, as n goes to infinity, the gap in achievable
throughput between these two networks is

T̂

Tr
=


K

K−M ·
(
1 + C

√
K−

√
M√

K

)
when w

2 < d < 1(
1 + C

√
K−

√
M√

K

)
when 0 < d < w

2

(49)

From equation (49), we can obtain the following theorem.

Theorem 8. Uniform user nodes’ distribution is order optimal
for throughput capacity of networks with regularly distributed
obstacles.

Proof: Since T̂ is the upper bound of achievable through-
put for networks with obstacles, no matter how user nodes
and obstacles are distributed, we only need to prove that
Tr = Θ(T̂ ). According to equation (49), when M = o(K),
we have T̂ /Tr = 1 +C. When M = A · K (0 < A < 1/4),
we have

T̂

Tr
=


1 + C − C

√
A

1−A
when w

2 < d < 1

1 + C − C
√
A when 0 < d < w

2

(50)

Since 1/2 ≤ C ≤ 1 and 0 < A < 1/4, for any 0 < M ≤ K/4,
we can obtain that

1 ≤ T̂

Tr
≤ 2

i.e., Tr = Θ(T̂ ).
2) Performance of the topology optimization algorithm: A

better network topology is shown in Fig. 10, whose achievable
throughput can be taken as the lower bound of the optimal
network topology. User nodes are distributed uniformly in the
marked areas. Denote the number of data flows crossing the
ith cell by F ′

i , we have that for all i

F ′
i ≤

 6 n√
K−

√
M

when w
2 < d < 1

2 n√
K−

√
M

+ 4c9n
1−d when 0 < d < w

2

Fig. 10. A better network topology for regularly distributed obstacles

The corresponding achievable throughput is T ′
r = c1W1/F

′
i .

When n goes to infinity, the improvement in achievable
throughput is

T ′
r

Tr
=


(1+C)

√
K−C

√
M√

K+
√
M

when w
2 < d < 1

(1+C)
√
K−C

√
M√

K when 0 < d < w
2

When M = o(K), we have

T ′
r

Tr
=

T̂

Tr
= 1 + C (51)

When M = A · K (0 < A < 1/4), we have

T ′
r

Tr
=


1 + C − C

√
A

1 +
√
A

when w
2 < d < 1

1 + C − C
√
A when 0 < d < w

2

=


T̂ /Tr

1−
√
A

when w
2 < d < 1

T̂ /Tr when 0 < d < w
2

(52)

From equations (51) and (52) we can find that when the
number of obstacles is small (i.e., M = o(K)), or when
the number of destinations is small (i.e., 0 < d < w/2),
the asymptotic throughput capacity of networks with regularly
distributed obstacles and optimal network topology can reach
the that of networks without obstacles. When the number
of obstacles and number of destinations are both large (i.e.,
M = Θ(K) and w/2 < d < 1), the asymptotic throughput
capacity of networks with regularly distributed obstacles and
optimal network topology may smaller than that of networks
without obstacles by at most a constant time. The worst case
happens when M = K/4, in which T ′

r = T̂ /2.

VIII. CONCLUSION

In this paper, we investigate the throughput capacity of
heterogeneous wireless network with different network topo-
logies and analyze the impact of topologies on the network



properties. We find that compared to the sub-networks with
the same network scales, combined networks have a larger
overall network achievable throughput. We also find that
uniformly distributed user nodes and regularly distributed
helping nodes have some advantages in improving the network
capacity. Compared to regularly distributed helping nodes, any
change of helping nodes’ topology cannot improve the network
achievable throughput on scale. We further investigate the
impact of obstacles and introduce an algorithm to generate the
optimal user nodes’ distribution for any given network areas
with obstacles.
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