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Abstract—In this paper, we define multicast for an ad hoc net-
work through nodes’ mobility as MotionCast and study the delay
and capacity tradeoffs for it. Assuming nodes move according
to an independently and identically distributed (i.i.d.) pattern
and each desires to send packets to distinctive destinations, we
compare the delay and capacity in two transmission protocols:
one uses 2-hop relay algorithm without redundancy; the other
adopts the scheme of redundant packets transmissions to improve
delay while at the expense of the capacity. In addition, we obtain
the maximum capacity and the minimum delay under certain
constraints. We find that the per-node delay and capacity for the
2-hop algorithm without redundancy are��� � and�� ��� �,
respectively; for the 2-hop algorithm with redundancy, they are
��� ��� � and �� ��� �, respectively. The capacity
of the 2-hop relay algorithm without redundancy is better than the
multicast capacity of static networks developed by Li [IEEE/ACM
Trans. Netw., vol. 17, no. 3, pp. 950–961, Jun. 2009] as long as is
strictly less than in an order sense, while when 	 �� �, mo-
bility does not increase capacity anymore. The ratio between delay
and capacity satisfies delay/rate � ��� � for these two
protocols, which are both smaller than that of directly extending
the fundamental tradeoff for unicast established by Neely and
Modiano [IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1917–1937,
Jun. 2005] to multicast, i.e., delay/rate � ��. More im-
portantly, we have proved that the fundamental delay–capacity
tradeoff ratio for multicast is delay/rate � ��� �, which
would guide us to design better routing schemes for multicast.

Index Terms—Capacity, delay, multicast, scaling law.

I. INTRODUCTION

A MOBILE ad hoc network (MANET) consists of a collec-
tion of wireless mobile nodes dynamically forming a tem-

porary network without the support of any network infrastruc-
ture or centralized control. In these networks, nodes often op-
erate not only as sources, but also as relays, forwarding packets
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for other mobile nodes. With the fast progress of computing and
wireless networking technologies, there are increasing interests
and uses of MANETs. Examples where they may be employed
are the establishment of connections among handheld devices
or between vehicles.

Multicast is a fundamental service for supporting infor-
mation communication and collaborative task completion
among a group of users and enabling cluster-based system
design in a distributed environment [2]. Different from in the
wired networks, multicast in MANETs is faced with a more
challenging environment. In particular, one needs to deal with
node mobility and thus frequent and possible drastic topology
changes [1]. Numerous protocols have then been proposed
for multicast in MANETs. They include traditional tree- or
mesh-based protocols [3]–[6], stateless protocols [7], [8],
flooding-based protocols [9], location-based protocols [10],
and hybrid protocols [11]. Some of them have already pointed
out that because links can be shared by several destinations,
multicast is beneficial to improve performance compared to
multiple unicast.

However, the feasible performance gains, in terms of both
throughput capacity and delay, that can be achieved by ex-
ploiting multicast, as well as the resulting scaling laws in a
network with an increasing number of nodes, have not been
investigated so far. In this paper, we bridge the theoretical
analysis of fundamental scaling laws in multicast mobile ad hoc
networks with the insights already gained through practical
protocol development. By doing so, we provide a theoretical
foundation to the design of intelligent communication schemes
that exploit multicast, analytically showing the potential of
such schemes in terms of capacity delay tradeoffs.

The theoretical analysis of scaling laws in wireless networks
is initiated by the seminal work of Gupta and Kumar [4]. Sev-
eral interesting studies have later emerged aimed at establishing
the fundamental scaling laws for networks with multicast traffic.
Li et al. [3], [22], [23] study the capacity of a static random
wireless ad hoc network for multicast where each node sends
packets to destinations. They show that the per-node mul-
ticast capacity is when , and is

when . Their results generalize previous ca-
pacity bounds on unicast [4] and broadcast [5]. Under a more
general Guassian channel model, multicast capacity is investi-
gated in [6] using percolation theory. Jacquet et al. [7] consider
multicast capacity by accounting the ratio of the total number
of hops for multicast and the average number of hops for uni-
cast. Shakkottai et al. [8] propose a comb-based architecture for
multicast routing that achieves the upper bound for capacity in
an order sense.

In contrast to the discussed static networks, Gossglauser and
Tse [9] for the first time have shown that a constant unicast
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per-node capacity can be achieved in mobile ad hoc networks
by exploiting the store–carry–forward communication para-
digm, i.e., by allowing nodes to store the packets and physically
carry them while moving around the network. Although this
communication scheme incurs a tremendous average delay
of [1], [10], it has laid the foundation of an entire new
area of research, usually referred to as delay-tolerant or dis-
ruption-tolerant networks (DTNs), which has recently attracted
a lot of attention. A typical DTN consists of a set of fixed or
mobile nodes and is characterized by intermittent connectivity
and frequent network partitioning, such that node mobility
is essential to ensure end-to-end communication. Many in-
teresting applications of DTN have been already envisioned
and experimented upon, such as vehicular networks based
on WiFi [13]–[16], networks based on human mobility [17],
disaster-relief networks [18], and Internet access to remote
villages [19].

The asymptotic capacity delay tradeoff in MANETs ex-
ploiting store–carry–forward schemes has attracted significant
attention and is studied by many authors under various
mobility models. The most studied model is arguably the
independently and identically distributed (i.i.d.) mobility
model, where all nodes are reshuffled in a new time slot,
due to its mathematical tractability. With this assumption,
Neely and Modiano [1] present a strategy utilizing redun-
dant packets transmissions along multiple paths to reduce
delay at the cost of capacity. They establish the necessary
tradeoff of delay/capacity and propose schemes
to achieve , and per-node
capacity when the delay constraint is , and

, respectively. In [16], Toumpis and Goldsimth con-
struct a better scheme that can achieve a per-node capacity
of under fading channels when the
delay is bounded by . Lin and Shroff [2] later study
the fundamental capacity–delay tradeoff and identify the lim-
iting factors of the existing scheduling schemes in MANETs.
Recently, Ying et al. [15] propose joint coding-scheduling
algorithms to improve capacity–delay tradeoffs, while Garetto
and Leonardi [24] show that it is possible to exploit node
heterogeneity under a restricted i.i.d. mobility model to achieve
both constant capacity and constant delay.

To the best of our knowledge, this is the first work to study ca-
pacity and delay tadeoffs in MANETs with multicast traffic. Be-
cause a key feature of multicast in MANETs is that packets can
be delivered via nodes’ mobility, we refer it as MotionCast. In-
tuitively, delay and capacity tradeoffs still exist for MotionCast,
but are more complicated than unicast scenarios. Since packets
can be delivered through the mobility of relay nodes, a higher
per-node multicast capacity than in static networks is expected.
However, the scheduling design becomes more difficult because
of the permanent change of the network topology as well as the
fact that multiple destinations for a packet will imply a larger
delay. Hence, some challenging issues raised naturally in this
context are the following.

• What is the maximum per-node MotionCast capacity?
• What is the delay for maximal capacity achieving schemes,

and what is the minimum possible delay?
• What is the delay and capacity tradeoff for MotionCast?

Answering these questions would provide helpful funda-
mental insights on the understanding and design of large-scale
multicast MANETs.

In this paper, we study the scaling laws in a cell-partitioned
MANET with multicast traffic. To begin, we propose a 2-hop
relay algorithm without redundancy. This algorithm is a gener-
alized version of the algorithm presented in [1] and corresponds
to a decoupled queuing model. Because destinations are asso-
ciated with a source, the delay for a packet is defined as the total
time needed to deliver it to all destinations. For a specific packet,
we first divide nodes other than the source into relays and des-
tinations (referred to as noncooperative mode). In this case, the
packet may be carried to the destinations either through the re-
lays or via the source, but will not be passed from one destina-
tion to another. Once a packet is sent to a relay, the relay will
be in charge of delivering it to all its destinations. Otherwise, if
the source encounters a destination before a relay, it will take
full responsibility of the rest multicast session. The MotionCast
delay and capacity are calculated under this model.

Then, we loosen the constraints of our initial model by per-
mitting information dissemination among destinations (cooper-
ative mode). In this scheme, we do not discriminate destinations
against the remnant nodes except the source. We define the first
node that a source meets as the “designated relay,” which in
fact may possibly be an intended destination. Likewise, the des-
ignated relay should carry the packet from the source until it
delivers this packet to all the destinations that have not received
the message. Notice that only one relay is associated to a specific
packet in the 2-hop relay algorithm, and therefore after a relay
is designated, other destinations will merely act as receivers for
the packet and do not help transmit the packet to other nodes.
Quite counterintuitively, we find that there would be no gain in
performance for the cooperative scheme compared to the non-
cooperative one from an order sense.

Next, we employ redundant packets transmissions to reduce
the delay. In a 2-hop relay strategy with redundancy, a source
sends a packet to multiple relays before all the destinations re-
ceive the packet, which increases the chance that a destination
meets some of the relays at the expense of reduced capacity.
If, in each time slot, only one transmission from a sender to
a receiver is permitted in a cell, we show that the expected
delay in the network is no less than . Moreover,
delay of is achievable with per-node capacity of

.
The main results of this paper are summarized as follows.

For the 2-hop relay algorithm without redundancy, the capacity
for MotionCast is with an average delay of .
Notice that the per-node capacity is better than the results of a
static multicast scenario in [3] as long as is strictly less than

in an order sense, i.e., . For the 2-hop relay algo-
rithm with redundancy, the capacity is with the
delay scaling as . Thus, delay and capacity trade-
offs emerge between these two algorithms, i.e., we can utilize re-
dundant packets transmissions to reduce delay, but the capacity
will also decrease. The tradeoff obtained by us is better than
that of directly extending the tradeoff for unicast to multicast.
We have also studied the fundamental delay–capacity tradeoff
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Fig. 1. Cell-partitioned MANET model with � cells and � mobile nodes under
multicast traffic pattern. (a) Network model. (b) Traffic pattern.

for MotionCast and shown that the fundamental tradeoff ratio is
delay/capacity .

The rest of the paper is organized as follows. In Section II,
we describe the network model. In Section III, we introduce
the 2-hop relay algorithm without redundancy. In Section IV,
the 2-hop relay algorithm with redundancy is presented. In Sec-
tion V, we discuss the results and figure out the fundamental
tradeoff for multicast. Finally, we conclude in Section VI.

II. NETWORK MODEL

Cell-Partitioned Network Model: The system model is based
on the cell-partitioned network model exploited in [1] and [18].
Suppose the network is a unit square and there are mobile
nodes in it. Then, we divide it into nonoverlapping cells with
equal size as depicted in Fig. 1. We assume nodes can commu-
nicate with each other only when they are within a same cell (to
locate the nodes, please refer to [17] and the references therein),
and to avoid interference, different frequencies are employed
among the neighboring cells.1 Additionally, to bound the inter-
ference inside each cell, we assume that the number of the cells
is on the same order as that of the nodes throughout this paper.
Thus, node-per-cell density scales as .2

Mobility Model: Dividing time into constant duration slots,
we adopt the following ideal i.i.d. mobility to model the some-
times drastic topology changes in MANETs and investigate
their impact. The initial position of each node is equally likely
to be any of the cells independent of others. At the beginning
of each time slot, nodes randomly choose and move to a new
cell i.i.d. over all cells in the network. Although the ideal i.i.d.
mobility model may appear to be an oversimplification, it has
been widely adopted in the literature because of its mathemat-
ical tractability, which could provide meaningful bounds on
performance. Note that the i.i.d. model also characterizes the
maximum degree of mobility. With the help of mobility, packets
can be carried by the nodes until they reach the destinations.

Traffic Pattern: We first define the source–destination rela-
tionships before the transmissions start. In particular, we as-
sume the number of users is divisible by and number all

1It is clear that only four frequencies are enough for the whole network.
2Theorems 3 and 4 will show this assumption does not vitiate our result and

can lead us to design a more simple and practical scheduling algorithm with the
purpose to achieve a good tradeoff between throughput and delay.

the nodes from 1 to . We uniformly and randomly divide the
network into different groups with each of them having
nodes. Assume packets from each node in a specific group
must be delivered to all the other nodes within the group. Nodes
not belonging to the group can serve as relays. Hence, each
node is a source node associated with randomly and inde-
pendently chosen destination nodes over all the
other nodes in the network. The relationships do not change as
nodes move around. Then, the sources will communicate data
to their destinations respectively through a common wireless
channel.

Definition of Capacity: First, we define stability of the
network. Packets are assumed to arrive at node with proba-
bility during each slot, i.e., as a Bernoulli process of arrival
rate packets/slot. For the fixed rates, the network is stable
if there exists a scheduling algorithm so that the queue in each
node does not increase to infinity as time goes to infinity. Thus,
the per-node capacity of the network is the maximum rate
that the network can stably support. Note that sometimes the
per-node capacity is called capacity for brief.

Definition of Delay: The delay for a packet is defined as the
time it takes the packet to reach all its destinations after it
arrives at the source. The total network delay is the expectation
of the average delay over all packets and all random network
configurations in the long term.

Definition of Redundancy: At each time slot, if more than
one node is performing as a relay for a packet, we say there
is redundancy in the network. Furthermore, we say the corre-
sponding scheduling scheme is with redundancy or redundant.
Otherwise, it is without redundancy.

Definition of Cooperative: We adopt the term “cooperative”
here to refer to a destination that can relay a packet from the
source to other destinations. Otherwise, the destinations merely
accept packets destined for them, but do not forward to others,
which is called noncooperative mode.

Notations: In our paper, we adopt the following widely used
order notations in a sense of probability. We say that an event
occurs with high probability (w.h.p.) if its probability tends to
1 as goes to infinity. Given two functions and , we
say that w.h.p. if there exists a constant such
that

(1)

If the above sign of inequality is strict, we denote
. Moreover, we say that w.h.p.

if w.h.p. If both and
w.h.p., then we say that

w.h.p.

III. DELAY AND CAPACITY IN THE 2-HOP RELAY ALGORITHM

WITHOUT REDUNDANCY

In this section, we propose 2-hop relay algorithms without
redundancy and compute the achievable delay and capacity both
under noncooperative mode and cooperative mode. Then, we
explore the maximum capacity and the minimum delay in these
situations.
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A. Under Noncooperative Mode

Here, we describe a 2-hop relay algorithm without redun-
dancy. Usually, a source sends a packet to one of the relays, then
the relay will distribute the packet to all its destinations. While
as an initial step, we consider the noncooperative mode, which
means a destination cannot be a relay.

2-Hop Relay Algorithm Without Redundancy I: During a time
slot, for a cell with at least two nodes:

1) If there exists a source–destination pair within the cell, ran-
domly select such a pair uniformly over all possible pairs
in the cell. If the source has a new packet in the buffer in-
tended for the destination, transmit. If all its destinations
have received this packet,3 then it will delete the packet
from the buffer. Otherwise, stay idle.

2) If there is no such pair, randomly assign a node as sender
and independently choose another node in the cell as re-
ceiver. With equal probability, choose from the following
two options4:
• Source-to-Relay Transmission: If the sender has a new

packet, one that has never been transmitted before, send
the packet to the receiver and delete it from the buffer.
Otherwise, stay idle.

• Relay-to-Destination Transmission: If the sender has a
new packet from another node destined for the receiver,
transmit. If all the destinations that want to get this
packet have received it, it will be dropped from the
buffer in the sender. Otherwise, stay idle.

Intuitively, since there are no redundant transmissions and the
cell partition with constant density scheme guarantees maximal
spatial reuse, the algorithm could achieve maximal throughput.
The only reason that a constant throughput cannot be achieved
is that a single packet needs to be transmitted repetitively for
about times to different destinations, and therefore a
throughput is feasible. Considering delay, it is intuitive for us to
loosely model the network as a queueing system such that every
source–destination pair corresponds to an M/M/1 queue. The
service time for a single packet, which follows exponential dis-
tribution, has an expectation of , i.e., the average waiting
time that two specific nodes meet. Then, the total delay for a
complete multicast session will roughly equal the maximum of

such i.i.d. random delays and turns out to be . We
formally derive the performance of the above algorithm.

The algorithm has an advanced decoupling feature between
all multicast sessions, as illustrated in Fig. 2, where nodes
are divided into destinations and relays for the packets from a
single source, and the packets transmissions for other sources
are modeled just as random ON/OFF service opportunities.

Let represent the probability of finding at least two nodes
in a particular cell, and represent the probability of finding
a source–destination pair within a cell. From Appendix I, we
obtain that

(2)

3We assume that nodes can be aware of this from the control information
passed over a reserved bandwidth channel.

4Note that because of the traffic pattern we assume and the probabilities
of source–destination and source–relay (or relay–destination) transmissions
we calculate, source–destination transmission does not have priority over
non-source–destination transmission, i.e., they happen independently.

Fig. 2. A decoupled queuing model of the network as seen by the packets trans-
mitted from a single source to multiple destinations.

(3)

When tends to infinity, it follows and
. Thus, if ;5 else if

. Intuitively, when approaches
the same order as , the multicast will reduce to a broadcast,
and the events corresponding to and will gradually become
identical. Then, we have the following theorem.

Theorem 1: Consider a cell-partitioned network (with
nodes and cells) under the 2-hop relay algorithm without

redundancy , and assume that nodes change cells i.i.d. and
uniformly over each cell every time slot. If the exogenous input
stream to node that makes the network stable is a Bernoulli
stream of rate and , then the average
delay for the traffic of node satisfies

(4)

where .
Proof: A decoupled view of the network as seen by a single

source is shown in Fig. 2. Due to the i.i.d. mobility model, the
source user can be represented as a Bernoulli/Bernoulli queue,
where in every time slot a new packet arrives with probability ,
and a service opportunity arises with some fixed probability
when the packet is handed over a relay or transmitted to a des-
tination. We first show that the expression still holds.

The Bernoulli nature of the server process implies that the
transmission probability is equal to the time average rate of
transmission opportunities of source .6 Let represent the rate
at which the source is scheduled to transmit directly to one of the
destinations, and represent the rate at which it is scheduled
to transmit to one of its relays. The same as equals the
probability that the source is scheduled to transmit directly to
the destination, and equals the probability that the source is

5Because when � �� and � � ����� � � �� � �� � � �

� � � � � �.
6A transmission opportunity arises when a user is selected to transmit to an-

other user and corresponds to a service opportunity in the Bernoulli/Bernoulli
queue. Such opportunities arise with probability � every time slot, independent
of whether or not there is a packet waiting in the queue.
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Fig. 3. More delicate view of a relay–destinations transmission. (a) Each packet delivered to a relay node has a similar form that contains its destinations’ infor-
mation in the header. (b) Each relay can make a packet into � similar copies and can be modeled as a node having �� �� � parallel subqueues buffering packets
intended for different destinations. � subqueues associated with � destinations of the current source are shaded in the figure.

scheduled to transmit to one of its relay users. Then, we have
. Since the relay algorithm schedules transmissions

into and out of the relay nodes with equal probability, hence
is also equal to the rate at which the relay nodes are scheduled
to transmit to the destinations. Every time slot, the total rate of
transmission opportunities over the network is thus .
Meanwhile, a transmission opportunity occurs in any given cell
with probability , hence

(5)

Recall that is the probability that a given cell contains a
source–destination pair. Since the algorithm schedules the
single-hop source-to-destination transmissions whenever pos-
sible, the rate satisfies

(6)

It follows from (6) and (8) that . The total
rate of transmissions out of the source node is thus given by

.
Next, we compute the average delay for the traffic of node .

There are two possible routings from a source to its destinations:
one is the 2-hop path along “source–relay–destinations”; the
other is the single-hop path from source to destinations directly.
As for the first routing, packet delay is composed of the waiting
time at source and relay. In this case, since the source can be
viewed as a Bernoulli/Bernoulli queue with input rate and
service rate , it has an expected number of occupancy packets

given by , where . From Little’s theorem,

the average waiting time in the source is .
Furthermore, this queue is reversible, so the output process is
also a Bernoulli stream of rate .

Notice that our traffic pattern has defined every disjoint
nodes as a group, and every node in this group is the source
for the other nodes. From a more delicate point of view, a
packet delivered from a source to a relay contains not only nec-
essary payload, but also redundant data in its header that tells
the relay which destinations this packet should be transmitted
to, shown in Fig. 3(a). Based on this information, the relay can
make similar copies, each of which contains less redundant
data in its header just indicating its own corresponding destina-
tion. Also, since a node can act as a relay to transmit packets to
other destinations, we model a relay as a node that has

parallel subqueues (each of them buffers the packets
intended for a certain destination), shown in Fig. 3(b). Next, we
will compute the input rate and output rate of a subqueue.

A given packet from a source is transmitted to the first relay
node with probability and rate (be-
cause with probability the packet is delivered to a relay, and
each of the relay nodes are equally likely). Since there
are sources for each subqueue, every time slot, a subqueue
in this relay receives a packet with probability ,
which can be expressed as . The latter one will not
influence our results, so we omit it. Hence, the input rate of a
subqueue is . On the other hand, the subqueue in the relay
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node is scheduled for a potential packet transmission to a desti-
nation node with probability (because when it acts
as a relay, it can transmit packets to destinations except
the source of the given packet and itself with equal probability).
Notice that packet arrivals and transmission opportunities in a
subqueue of the relay node are mutually exclusive events. It fol-
lows that the discrete-time Markov chain for queue occupancy
in the relay node can be written as a simple birth–death chain
that is identical to a continuous-time M/M/1 queue with input
rate and service rate . Each destination
obtains the packet from the relay through such a queue, thus the
waiting time for it is an exponential distributed variable with an
expectation of .

The resulting waiting time for multicast is deter-
mined by the maximum value among all the waiting times

of these destinations. Due to the fact
that: 1) all destinations share the same arrival process, and 2)
the interference constraint that a relay node can communicate
with only one destination in one time slot, are corre-
lated over . However, we can construct a set of dual random
variables such that they are i.i.d. They provide a slightly
alternated view of the queueing system depicted in Fig. 3, with
multidestination reception enabled, i.e., if a source encounters
more than one destination, the packet will be transmitted to all
of them. Additionally, we hypothesize that the arrival processes
of different destinations are independent, each with rate . In
the following, we shall show w.h.p.

Condition on the event that the relay encounters one or more
destinations, and denote as the probability that exactly
one or more than one destinations are reached, respectively. It
is clear that if and
if . Therefore, , which indicates that
multireception does not affect the service process in an order
sense. Similarly, also notice that the input process for a sub-
queue in the two queueing systems, though constructed on in-
dependent probability spaces, is the same and does not rely
on network scale . Due to the nature of the M/M/1 queue, the
waiting time or only depends on the input and the
service process, and it is clear that w.h.p. In
other words, there exists constant such that
w.h.p. By Lemma 2 (see the proof in Appendix II), we obtain
that . Thus, if
the packet is delivered through the path “source–relay–destina-
tions,” the average delay is .

While if the packet is directly sent to the destinations by the
source, it will wait at the source for a time first, then the
source distributes this packet to the remnant destinations.
At this time, the source can be treated as a node having parallel
M/M/1 subbuffers corresponding to its destinations similarly.
The source will copy this packet into similar duplicates and
add them into respective subbuffers associated with the remnant

destinations. Also, at this time, the source can be treated as
a continuous-time M/M/1 queue. Since the probability that the
source needs to send packets directly to destinations is , the
incoming data rate is thus for such a queue. Meanwhile, the
service rate at each equals to the transmission rate between
a source–destination pair. Hence, the expectation of the waiting
time for each one of the destinations through such a queue
is . By Lemma 2 and the same method in the

above calculation of the delay through 2-hop route, we have the
expected waiting time for the packet to reach all remnant
destinations as .

Finally, by weighting the delay that occurs in both routings,
we achieve the total network delay as

(7)

To ensure the stability of the network, the incoming rate
should be less than the service rate at any stage of the network.
Thus

i.e., . Moreover, the total network delay is in the order
of for a fixed traffic loading value at each
relay and source.

From the above discussion, we conclude the theorem.

B. Under Cooperative Mode

In Section III-A, we proposed a 2-hop relay algorithm
without redundancy obtaining per-node capacity with
delay . Here, we bring forward a more general
algorithm that does not discriminate destinations and the nodes
other than the source, i.e., under cooperative mode. This algo-
rithm achieves the same performance as the first one. Since the
second algorithm is simpler than the first one, we adopt this
algorithm and refer to it as the 2-hop relay algorithm without
redundancy for briefness in the rest of the paper. It is described
as follows.

2-Hop Relay Algorithm Without Redundancy II: For each cell
with at least two nodes in a time slot, a random sender and a
random receiver are picked with uniform probability over all
nodes in the cell. With equal probability, the sender is scheduled
to operate in the following two options.

1) Source-to-Relay Transmission: If the sender has a new
packet, one that has never been transmitted before, send the
packet to the receiver and delete it from the buffer. Other-
wise, stay idle.

2) Relay-to-Destination Transmission: If the sender has
packets received from other nodes that are destined for the
receiver and have not been transmitted to the receiver yet,
then choose the latest one, transmit. If all the destinations
that want to get this packet have received it, it will be
dropped from the buffer in the sender. Otherwise, stay
idle.
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The algorithm simply designates the first node a source meets
as the relay, no matter if it is a destination. Thus, according to
the scheduling scheme, all the packets will be delivered along
a 2-hop path “source–relay–destinations.” Then, we summarize
the next theorem.

Theorem 2: Consider the same assumptions for the network
as Theorem 1, under the 2-hop relay algorithm without redun-
dancy II. The resulting per-node capacity and the average delay
are and , respectively, for all .

Proof: Since all the packets will be delivered along a 2-hop
“source–relay–destinations” path, by using the same analytical
method, we can know and . Meanwhile, a trans-
mission opportunity occurs in any given cell with probability ,
hence

(8)

It follows from (8) that .
Thus, following the same analytical steps as Theorem 1 when
is strictly less than in an order sense, we can know that

packet delay is composed of the waiting time at source and
relay. Since the source can be viewed as a Bernoulli/Bernoulli
queue with input rate and service rate , the average waiting
time in the source is . Moreover, this queue is
reversible, so the output process is also a Bernoulli stream of
rate .

A given packet from this output process is transmitted to
the first relay node with probability . Hence, every time
slot, this relay independently receives a packet with probability

. On the other hand, the relay node is scheduled
for a potential packet transmission to a destination node with
probability (because when it acts as a relay, it can
transmit packets to destinations except the source of
the given packet and itself with equal probability). Notice that
packet arrivals and transmission opportunities are mutually
exclusive events in the relay node.

When taking the 2-hop algorithm without redundancy II, the
first node a source meets is as the relay, no matter if it is a desti-
nation. The difference is that if the relay is a destination node, it
needs only to relay the packet to the rest destinations. Oth-
erwise, it needs to relay the packet to all destinations. Since we
focus on the performance in an order sense, we omit this differ-
ence between these two cases and assume a relay is responsible
for delivering a new packet to its corresponding destinations
for simplicity.

At this time, when receiving a new packet from the source, the
relay node will make it into similar duplicates. Thus, a relay
can be viewed as an M/M/1 queue with input rate and ser-
vice rate . Hence, the expectation of the waiting time of each
destination is . By Lemma 2, we have that the
expected waiting time for the packet to reach all destinations
is .

Finally, we achieve the total network delay as

(9)

Looking upon the asymptotic behaviors of the network delay
when , we have , To ensure the
stability of the network, the incoming rate should be less than
the service rate at any stage of the network. Thus

i.e., . Furthermore, the total
network delay is governed by (9), which is on the order of

for a fixed traffic loading value at each
relay.

From this discussion, we conclude the theorem.

C. Maximum Capacity and Minimum Delay

Although we have constructed the achievable delay and ca-
pacity if no redundancy is used, open questions are still left for
the maximum capacity and the minimum delay of this network.
We address these problems here by presenting the following
theorems.

Theorem 3: The multicast capacity of a cell-partitioned net-
work is if only a pair of a sender and receiver is active in
each cell per time slot. In particular, if , the multicast
capacity is .

Proof: We use hop argument to prove this result. Since
for any interval [0, T], the less hops the source needs to send
a packet to its destinations, the more capacity it can achieve.
Thus, we assume a packet is delivered directly from a source to
one of its destinations via the 1-hop route “Source–destination.”
Let represent the total number of packets transferred over
the network from sources to destinations via the 1-hop route
during the interval [0, T]. Fix . For network stability, there
must be arbitrarily large values such that the sum output rate
is within of the total input rate

(10)

If this were not the case, the total number of packets in the
network would grow to infinity, and hence the network would
be unstable. Since every transmission just needs 1 hop, the total
number of packet transmissions in the network during the first

slots is also . This value must be less than or equal to
the total number of transmission opportunities , and hence

(11)

where represents the total number of cells containing at
least two users in a particular time slot, summed over all time
slots . By the law of large numbers, it is clear that

as , where is the steady-state proba-
bility that there are two or more users within a particular cell
and is given by (2).

From (10) and (11), it follows that

(12)

Notice that , thus we have . Additionally,
if .
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Theorem 4: Algorithms permitting at most one transmission
in a cell at each time slot that do not use redundancy cannot
achieve an average delay of . In particular, if

.
Proof: The minimum delay of any packet is calculated by

considering the situation where the network is empty and node
1 sends a single packet to destinations.7 Since relaying the
packet cannot help reduce delay, it can be treated as having no
relay at all. Denote and as the chance that node 1 meets
(i.e., two nodes move into a same cell) one of the destinations in
a time slot and the minimum amount of time it takes the source
to meet all the destinations, respectively. We have that .
Since means that at the th time slot the source
has met destinations and at the th time slot it meets the
last one, the probability can thus be written as

(13)

Therein the factor denotes that the last destination meets
by the source can be any one of the destinations. The first term
in the latter factor infers that has not been met in the former

time slots. Because the first term also includes the prob-
ability that the source has not met and any one of the other
nodes from to , this value should be subtracted from
the first term, so the second term is attached, and similarly we
have the following terms. Hence, the expectation of
is

(14)

wherein Lemma 1 and the following identical relation for any
are exploited:

7By saying the network is empty, we mean only node 1 has packets to send,
and other nodes have no packet and stay idle.

Finally, noticing that , we obtain that
. In particular, if .

Since at any time slot, if there is more than one destination in a
same cell as the source, only one destination could be selected
as the receiver, and the actual delay for the packet to
be delivered to all the destinations will be larger or equal than

, which points out the theorem.
Combining these results with the delay and capacity

achieved by the 2-hop relay algorithm without redundancy, we
find the exact order of the delay and capacity are and

, respectively.

IV. DELAY AND CAPACITY IN THE 2-HOP RELAY ALGORITHM

WITH REDUNDANCY

In this section, we adopt redundancy to improve delay. The
idea originates from a basic notion that if we send a particular
packet to many nodes of the network, the chances that some
node holding the packet reaches a destination will increase. This
approach is also implemented in [1] and [19]. We first consider
the minimum delay of 2-hop relay algorithms with redundancy.
Then, we design a protocol using redundancy to achieve the
minimum delay.

A. Lower Bound of Delay

Here, we obtain lower bound of delay if only one transmission
from a sender to a receiver is permitted in a cell in the following
theorem.

Theorem 5: There is no 2-hop algorithm with redundancy
that can provide an average delay lower than if
only one transmission from a sender to a receiver is permitted
in a cell.

Proof: To prove this result, we consider an ideal situation
where the network is empty and only node 1 sends a single
packet to destinations. Clearly, the optimal scheme for the
source is to send duplicate versions of the packet to new relays
whenever possible, and if there is a destination within the same
cell as the source, it will choose a destination as relay. For a
duplicate-carrying relay, it sends the packet to be relayed to the
destinations as soon as it enters the same cell as a destination.
Denote as the time required to reach the destinations under
this optimal strategy for sending a single packet.

In order to avoid the interdependency of the probability that
different destinations obtain a packet from the source or the
relay nodes, we additionally assume that all the destinations
within a same cell as the source or a relay node can obtain the
packet during the transmission, which is referred to as a mul-
tidestination reception style. Note that our assumption differs
from the multiuser reception ([1]) in that usually each cell is per-
mitted to have a single reception, except there is more than one
intended destination within a the cell, while [1] allows a trans-
mitted packet to be received by all other users in the same cell
as the transmitter. Denote as the time to reach the destina-
tions when we add the multidestination reception assumption.
It is easy to see that .

Then, let represent the total number of nodes that act as
intermediate relays (including the source) at the beginning of
slot . Because of the limitation of 2–hop transmission, a new
relay can only be generated by the source. Hence, every time
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slot, at most one node can be a new relay. Thus, we have for all

(15)

Observe that during slots there are at most
nodes holding the packet and willing to help forward it to

the destinations. Hence, during this period, the probability that
a destination meets at least a relay is at most .
Moreover, note that since we take the multidestination recep-
tion style, the events in which different destinations meet the
source or a relay node every time slot are independent. Thus,
the probability that all the destinations meet at least a relay
during this period is at most .
We thus have

(16)

Choosing and letting , it yields that

(17)

Thus

(18)

as . From (18), we prove the theorem.

B. Scheduling Scheme

In Section IV-A, we considered the minimum delay of the net-
work if we implement redundant packets transmissions. Here,
for acquiring the upper bound of the delay, we propose a 2-hop
relay algorithm with redundancy to achieve the minimum delay.

Assume each packet is labeled with a Sender Number ,
and a request number is delivered by the destination to the
transmitter just before transmission. In the following algorithm,
we let each packet be retransmitted times to distinct
relay nodes.

Denoting redundancy as , to better understand the reason
we let , it is intuitive to simplify a multicast
session into two phases, duplication of relays and delivery to
destinations, and assume they happen in sequence. Clearly, the
duration of the first phase is . Consider the duration of
the second phase, again it is convenient for us to loosely model
the network as a queueing system such that every source–des-
tination pair corresponds to an M/M/1 queue, where the
exponentially distributed service time has the average ,
i.e., the expected time that a generic relay meets a specific
destination. The overall delay for a multicast session would

then be . To minimize delay, clearly we should
let , which yields . In-
terestingly, this is exactly the lower bound of delay established
in Theorem 5.

2-Hop Relay Algorithm With Redundancy: In every cell
with at least two nodes, randomly select a sender and a re-
ceiver with uniform probability over all nodes in the cell.
With equal probability, the sender is scheduled to operated in
either “source-to-relay” transmission or “relay-to-destination”
transmission as described as follows.

1) Source-to-Relay Transmission: The sender transmits
packet , and does so upon every transmission oppor-
tunity until duplicates have been delivered to
distinct relay nodes (possibly be some of the destinations)
or until the destinations have entirely obtained . After
such a time, the sender number is incremented to .
If the sender does not have a new packet to send, stay idle.

2) Relay-to-Destination Transmission: When a node is sched-
uled to transmit a relay packet to its destinations, the fol-
lowing handshake takes place.
• The receiver delivers its current number for the

packet it desires.
• The transmitter sends packet to the receiver. If the

transmitter does not have the requested packet , it
stays idle for that slot.

• If all destinations have already received , the trans-
mitter will delete the packet that has a number equal
to in its buffer.

Next, we present the performance of this algorithm.
Theorem 6: The 2-hop relay algorithm with redundancy

achieves the delay bound, with a per-node ca-
pacity of .

Proof: For the purpose of proving this theorem, we con-
sider an extreme case of the packets transmissions. Note that
when a new packet arrives at the head of its source queue, the
time required for the packet to reach its destinations is at most

, where represents the time required for the
source to distribute duplicates of the packet, and
represents the time required to reach all the destinations given
that relay nodes hold the packet. The reason behind
this claim is the submemoryless property of the random vari-
able [1], which means the residual time of given that a
certain number of slots have already passed before it expires is
stochastically less than the original time .

Now we bound the expectations of and 8 by taking into
account the collisions among the multiple sessions.

The Bound: For the duration of , there are at least
nodes that do not have the packet. Let repre-

sent the event that every time slot at least one of these nodes
visits the cell of the source. Hence, the probability of event
is at least . Given this event, the prob-
ability that the source is chosen by the 2-hop relay algorithm
with redundancy to transmit is expressed by the product ,
representing probabilities for the following conditionally inde-
pendent events given event : Under the condition that at last
one of these nodes visits the cell of the source,

8Note that the bounds on ��� � and ��� � are computed under suitably
large � values.
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is the probability that the source is selected from all other nodes
in the cell to be the transmitter, and represents the probability
that this source is chosen to operate in “source-to-relay” trans-
mission. From [1, Lemma 6], we have .

The probability that the source operates in “source-to-
relay” transmission is . Thus, every time slot during the in-
terval , the source delivers a duplicate packet to a new node
with probability of at least , where

The average time until a duplicate is transmitted to a new
node is thus a geometric variable with mean less than or equal
to . It is possible that two or more duplicates are delivered
in a single time slot if we enable multiuser reception. However,
in the worst case, of these times are required, so the
average time is upper-bounded by .

The Bound: To prove the bound on , let rep-
resent the event that every time slot in which there are at least

nodes that possess the duplicates of the packet, and
note that event is already a certainty with a probability of
1. The probability that one of these nodes transmits the packet
to one of the destinations is given by the chain of probabilities

. The values represent probabilities for the following
conditionally independent events given event : Under the con-
dition that there are at least nodes that possess the du-
plicates of the packet in every time slot, represents the prob-
ability that there is at least one other node in the same cell as
the destination rep-
resents the probability that the destination is selected as the re-
ceiver (similar to , we have ), represents
the probability that the sender is operates in “relay-to-destina-
tion” transmission , and represents the proba-
bility that the sender is one of the nodes that possess
a duplicate of the packet intended for the destination (where

). Thus, every time slot,
the probability that each destination receives a desired packet is
at least . Similar to Theorem 4, since com-
pletes when all destinations receive the packet, the value of

is thus less than or equal to the times of the inverse
of that quantity. Hence, we have .

Finally, according to [1, Lemma 2], we bound the total
network delay and obtain that
the achievable per-node capacity under this algorithm is

.

V. FUNDAMENTAL DELAY AND CAPACITY TRADEOFF

In Sections III and IV, we presented algorithms both without
and with redundancy to fulfill the task of MotionCast. In this
section, we first draw a comparison of the delay and capacity
with the former results. Then, we derive the fundamental delay
and capacity tradeoff for multicast.

A. Results Comparison

Recall that the multihop algorithm in [1] is based on flooding
the message among the network. It could also serve for mul-
ticast. The delay and capacity tradeoffs in the 2-hop relay al-

TABLE I
DELAY AND CAPACITY TRADEOFFS IN DIFFERENT ALGORITHMS

gorithm without and with redundancy, together with the mul-
tihop relay algorithm with redundancy, can be summarized as
in Table I.

Compared to the multicast capacity of static networks devel-
oped in [3], we find that capacity of the 2-hop relay algorithm
without redundancy is better when . Otherwise, ca-
pacity remains the same as that of static networks, i.e., mobility
cannot increase capacity. Moreover, compared to the results of
unicast in [1], we find that capacity diminishes by a factor of
and for the 2-hop relay algorithm without and with
redundancy, respectively; delay increases by a factor of
and for the 2-hop relay algorithm without and with re-
dundancy, respectively. This is because we need to distribute
a packet to destinations during MotionCast. Particularly, if

, we find the results of unicast are a special case of
our paper.

Furthermore, we see that delay of the 2-hop algorithm with
redundancy is better than that of the 2-hop algorithm without re-
dundancy, but its capacity is also smaller than that of the no-re-
dundancy algorithm when . This suggests that re-
dundant packets transmissions can reduce delay at an expense
of the capacity. The ratio between delay and capacity satisfies
delay/rate for both of these two protocols. How-
ever, if we fulfill the job of MotionCast by multiple unicast from
the source to each of the destinations, we find that capacity will
diminish by a factor of and delay will increase by a factor
of for both algorithms without and with redundancy, which in-
fers that the fundamental tradeoff for unicast established in [1]
becomes delay/rate in MotionCast. Thus, it turns out
our tradeoff is better than that of directly extending the tradeoff
for unicast to multicast.

B. Fundamental Delay and Capacity Tradeoff for Multicast

Observing Table I, we see that the delay–capacity ratio
under these three schemes are and

respectively, which leads us to suppose the gen-
eral relationship between delay and capacity is that their ratio
is larger than .

Consider a network with users, and suppose all users re-
ceive packets at the same rate . A control protocol that makes
decisions about scheduling, routing, and packet retransmissions
is used to stabilize the network and deliver all packets to their re-
spective destinations while maintaining an average delay less
than some threshold . We have the following theorem.

Theorem 7: A necessary condition for any conceivable
routing and scheduling protocol with destinations for trans-
mitting that stabilizes the network with input rates while
maintaining bounded average delay is given by

(19)
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which equals the following expression:

(20)

Proof: Suppose the input rate of each of the sessions
is , and there exists some stabilizing scheduling strategy that
ensures a delay of . In general, the delay of packets from
individual sessions could be different, and we define as the
resulting average delay of packets from session . We thus have

(21)

Now, we count the number of transmission times for session .
Every time slot, if this packet or its copies has been transmitted
to different nondestination receivers, the count will be added
by . We define as the nondestination redundancy that rep-
resents the final number of counting when the packet finally
reaches the th destination and ends its task, averaged over
all packets from session . That is, is the average number
of nondestination transmissions for a packet from session .
Note that all packets are eventually received by the destina-
tions, so that is the actual number of transmissions for
packets from session , and then the average number of suc-
cessful packet receptions per time slot is thus given by the quan-
tity . Since each of the users can receive at
most one packet per time slot, we have

(22)

Now, consider a single packet that enters the network from
session . This packet has an average delay of and an average
nondestination redundancy of . Let random variables and

represent the actual delay and nondestination redundancy for
this packet. We have

(23)

where the last inequality follows because
for any nonnegative random variable .

Consider now a virtual system in which there are
users initially holding packet , and let represent the
time required for one of these users to enter the same cell as
the th destination. Then, let represent the time required
for these users to enter all the destinations, so we have

. Note that the distribution of each
is the same as , in which

. Thus, .
In order to connect this variable to our interest , we

develop another parameter , which represents the cor-
responding delay under the restricted scheduling policy that
schedules packets as before until either the packet is success-
fully delivered to all destinations or the redundancy increases

to (where no more redundant transmissions are allowed).
Since this modified policy restricts redundancy to at most ,
the delay is stochastically greater than the variable ,
representing the delay in a virtual system with only one packet
that is initially held by users. In addition, as the restricted
policy is identical to the original policy whenever ,
hence .

Finally, we introduce the last, more easily calculated contin-
uous variable , which is also the maximum of several ones

. Each of them has the same dis-
tribution as

, where .
Now, we put the relationship among these three variables

clearly as follows9:

(24)

Furthermore, although and defined in our paper
are a little different from those defined in [1], i.e.,

and , they
also follow claim 1 and claim 2 in [1]. Thus, we have the
following useful inequality:

(25)

where the conditional expectation is minimized over all con-
ceivable events (for , while for ) that occur with prob-
ability greater than or equal to .

Until now, we have to calculate the last value .
The result of [1, Lemma 8] has been put as follows:

For any nonnegative random variable , we have

(26)

where is the unique real number such that
and .

Note that in the special case when is continuous at
, then , and hence we get the

simpler expression

(27)

Now, recall the distribution expression of

(28)

Then, we get the value of : .

9Because ���� � �� � � � ���� � �� � � � ���� � �� �

�� ���� � �� � �����, and according to the definition in [20], we
have that � is stochastically greater than � .
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Returning to our question, we do the calculation as follows:

(29)

Noting that , we can calcu-

late by gradually reducing the variable , as can be
easily obtained as

(30)

wherein . Continuing this recursion, we

have that

(31)

wherein . Connecting (27), (29), and (31), we
have that

(32)

wherein . From the definitions of and ,
we have . Since

for any , we have . Then,
using (23), (25), and (32) in (21) yields

(33)

where (33) follows from Jensen’s inequality, noting that the
function is convex, and hence

. Combining (22) and (33), we have

(34)

wherein has the same order as , proving the theorem.
We notice that in inequality (22), thus

. Divide on both sides of formula (1), and we get
. Since , i.e., remains

a constant as and grow into infinity, we get

(35)

Finally, we have the following corollary.
Corollary 1: For any scheduling algorithm in the network

with nodes moving according to an i.i.d. pattern, and each de-
sire to send its data to distinct destination nodes, the achiev-
able capacity and delay satisfy the fundamental relation-
ship: .

VI. CONCLUSION AND FUTURE WORK

In this paper, we study delay and capacity tradeoffs for Mo-
tionCast. We utilize redundant packets transmissions to realize
the tradeoff and present the performance of the 2-hop relay al-
gorithm without and with redundancy, respectively. We find that
the capacity of the 2-hop relay algorithm without redundancy is
better than that of static networks when . Our tradeoff
is better than that of directly extending the tradeoff for unicast to
multicast. Moreover, we prove that the fundamental delay–ca-
pacity tradeoff ratio for multicast is . We have not
taken into account the multihop transmission schemes and the
effect of different mobility patterns yet, which could be a future
work.

Moreover, the results in this paper are derived theoretically,
and it would be an interesting work to validate the results in
real experimental or simulation examinations. Also, this is a
challenging work since the network is a large-scale one and all
the nodes in the network keep on moving. Since there has been
some work in the area of DTN trying to implement experiments
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or simulate situations and some excited results are obtained, it
would be very interesting and promising to investigate the ca-
pacity and delay under a realistic circumstance. This could be
our future work as well.

APPENDIX I
DERIVATION OF AND

Since represents the probability of finding at least two nodes
in a particular cell, the opposite event of it is there is no node
(and this happens with a probability of ) or only one
node in the cell (this occurs with a probability of ,
where infers that the node in the cell can be any one among all

nodes of the network). Thus, we have the expression of (2).
As for , it represents the probability of finding a source–des-

tination pair within a cell. Note that in our traffic pattern, we
suppose the number of nodes is divisible by and uni-
formly and randomly divide the network into different groups
with each of them having nodes. Also assume packets
from each node in a specific group must be delivered to all the
other nodes within the group. Thus, any two nodes within a same
group is a source–destination pair. The probability that there is
not any source–destination pair belonging to any group within a
particular cell is . Since each group
is independent with others, the probability that there is not any
source–destination pair in the cell is thus th power of the
above quantity. Hence, the probability of the inverse event is
given by (3).

APPENDIX II
USEFUL LEMMAS

Here, we present useful lemmas in this paper.

Lemma 1: , where

and is a Euler constant.
Proof: Denote the left-hand side of the equation by ,

then we have . Notice that

, and it follows

(36)

Recall that , hence

we obtain

. Combining with (36), we get

, then

(37)

Since the right-hand side of (37) is the harmonic series, this
lemma holds.

Lemma 2: Suppose are continuous i.i.d. ex-
ponential variables with expectation of , and denote

, then (for
simplicity, we can treat just as ), where

.
Proof: Consider the cumulative distribution function (cdf)

of

(38)

Thus, the probability density function (pdf) of can be ex-
pressed as

(39)

Then, we obtain

(40)

According to Lemma 1, we conclude this lemma.
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