
1

A Distributed Algorithm to Construct Multicast Trees in
WSNs: An Approximate Steiner Tree Approach

Hongyu Gong
Dept. of Electronic

Engineering
Shanghai Jiao Tong University

ann@sjtu.edu.cn

Lutian Zhao
Dept. of Mathematics

Shanghai Jiao Tong University
golbez@sjtu.edu.cn

Kainan Wang
Dept. of Computer Science

Shanghai Jiao Tong University
sunnywkn@sjtu.edu.cn

Weijie Wu
School of Information Security

Engineering
Shanghai Jiao Tong University

weijiewu@sjtu.edu.cn

Xinbing Wang
Dept. of Electronic

Engineering
Shanghai Jiao Tong University

xwang8@sjtu.edu.cn

ABSTRACT
Multicast tree is a key structure for data dissemination from
one source to multiple receivers in wireless networks. Mini-
mum length multica modeled as the Steiner Tree Problem,
and is proven to be NP-hard. In this paper, we explore how
to efficiently generate minimum length mult wireless sensor
networks (WSNs), where only limited knowledge of network
topology is available at each node. We design and analyze a
simple algorithm, which we call Toward Source Tree (TST),
to build multicast trees in WSNs. We show three metrics
of TST algorithm, i.e., running and energy efficiency. We
prove that its running time is O(

√
n logn), the best among

all existing solutions to our best knowledge. We prove that
TST tree length is in the same order as Steiner tree, give
a theoretical upper bound and use simulations to show the
ratio be only 1.114 when nodes are uniformly distributed.
We evaluate energy efficiency in terms of message complex-
ity and the number of forwardin prove that they are both
order-optimal. We give an efficient way to construct multi-
cast tree in support of transmission of voluminous data.

1. INTRODUCTION
Wireless Sensor Network (WSN) is a network of wireless

sensor nodes into which sensing, computation and communi-
cation functions are integrated. Sensors are self-organizing
and deployed over a geographical region [1]. Multicasting,
i.e., one-to-many message transmission, is one of the most
common data transmission patterns in WSNs. Tree is the
topology for non-redundant data transmission. To enable
efficient multicast, multicast tree has been proposed and
widely used. It has not only been used for multicast ca-
pacity analysis in wireless networks [2–4], but in practice,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

multicast supports a wide range of applications like distance
education, military command and intelligent system [5].

Many researchers have been working on constructing effi-
cient multicast trees [6–8]. They have proposed a number of
algorithms so as to minimize the routing complexity as well
as achieve the time and energy efficiency (for details, please
refer to the next section), but most of them did not focus on
an important performance measure: the tree length. This
is a critical metric since larger tree length clearly results
in longer delay. To enable the messages to be forwarded
farther, sensors have to increase their transmission power,
causing more energy consumption as well as more serious
interference to neighboring nodes. Besides, as the trans-
mission distance increases, the messages suffer from higher
probability of transmission failure.

Recently, GEographic Multicast (GEM), inspired by Eu-
clidean Steiner Tree, was proposed for routing in dense wire-
less networks [9]. Formally, given a network G = (V,E), the
weight of each edges, and a set of terminals S ⊆ V , the
Steiner Tree Problem is to find a tree in G that spans S
with the minimum total weight [10]. This problem has been
proven to be NP-hard [11], and has not been visited for a
long time. Former forms of its approximate implementa-
tion were not appropriate for constructing multicast trees in
WSNs for various reasons (details will be discussed in the
following section.) In GEM, the authors took the first step
to utilize the Steiner tree for constructing multicast trees in
WSNs, achieving routing scalability and efficiency. This ap-
proach can potentially reduce the tree length, but this very
simple form of utilization only considers the hop count in
an unweighted graph, but not the total length of the mul-
ticast tree in a weighted graph. Further, as for the perfor-
mance analysis, the statistical properties were all under the
assumption that all nodes are uniformly distributed, mak-
ing it difficult to tell its efficiency under a realistic network
environment.

In this paper, inspired by taking the advantage of the
Steiner tree property, we design a novel distributed algo-
rithm to construct an approximate minimum-length mul-
ticast tree for wireless sensor networks, aiming at achiev-
ing energy efficiency, ease of implementation and low com-
putational complexity, at an affordable cost on the sub-

2

optimality of tree length. In what follows, we call our design
Toward Source Tree Algorithm, or TST for short. We quan-
titatively evaluate TST algorithm performance under gen-
eral node distribution, and show that TST has the following
satisfactory metrics:

• Its running time is O(
√
n logn), the best among all

existing solutions for large multicast groups.

• Its tree length is in the same order as Steiner tree, and
simulation shows the constant ratio between them is
only 1.114 with uniformly distributed nodes.

• Its message complexity (which we will formally define
later) and the number of nodes that participate in for-
warding are both order-optimal, yielding high energy
efficiency for sensor networks.

The rest of paper is organized as follows. Section 2 states
related work. In Section 3, we introduce our network model.
In Section 4, we present our Toward Source Tree Algorithm
to construct a multicast tree. In Section 5, 6 and 7, we eval-
uate the performance of our algorithm mainly from three
aspects: multicast tree length, running time and energy effi-
ciency separately. In Section 8, we use extensive simulations
to further evaluate the performance. Section 9 concludes
this paper. Due to page limit, some detailed derivations are
omitted in this paper.

2. RELATED WORK
We review related work in two categories: the multicast

tree construction and the approximate Steiner tree.
Multicase tree construction. Many studies focus on mul-
ticast routing in wireless networks, and useful techniques for
routing have been proposed in WSN. Sanchez et al. pro-
posed Geographic Multicast Routing (GMR), a heuristic
neighborhood selection algorithm based on local geographic
information [6]. Later Park et al. [15] combined distributed
geographic multicasting with beaconless routing. In Lo-
calized Energy-Efficient Multicast Algorithm (LEMA), for-
warding elements apply the MST algorithm locally for rout-
ing [7]. Dijkstra-based Localized Energy-Efficient Multicast
Algorithm (DLEMA) finds energy shortest paths leading
through nodes with maximal geographical advance towards
desired destinations [8]. However, few works have consid-
ered minimizing the distance of multicast routing or provid-
ing comprehensive quantitative analysis theoretically on the
performance of routing policies.
Approximate Steiner Tree. Shortest Path Heuristic (SPH)
and Kruskal Shortest Path Heuristic (KSPH) add new nodes
to existing subtrees through the shortest path [12]. Aver-
age Distance Heuristic (ADH) joins subtrees that contain
receivers by a path passing non-receivers with minimal av-
erage distance to existing subtrees [13]. Santos et al. pushed
forward distributed dual ascent (DA) algorithm, achieving
good performance in practice [14]. The comparison of these
algorithms with our TST algorithm is shown in Table 1.
These algorithms were proposed for point-to-point networks.
In this paper, we consider the Steiner Tree Problem in wire-
less sensor networks that are broadcast in nature. In addi-
tion, each node has limited computation and storage capabil-
ity. Devices are usually battery-powered, therefore energy-
efficiency is of great importance. Due to these specific fea-
tures and requirements, existing algorithms for P2P are not
suitable for WSN.

To sum up, there have been extensive existing works fo-
cusing on multicast tree construction or the approximate
Steiner tree problems, but we have not found a perfect adop-
tion of Steiner tree into constructing multicast trees.

3. NETWORK MODEL
Let us first use mathematical model to capture a wireless

sensor network. We assume the network consists of n nodes
in total (or we call the network size is n), distributed in-
dependently and identically in a unit square. Each node is
assigned with a unique identifier to be distinguished from
others. Each time when a source needs to transmit mes-
sages, it chooses m receivers randomly. In other words, m is
the number of nodes that participate in a multicast transmis-
sion, or we call it the multicast group size. For our statistical
analysis, we focus on the dense network and large multicast
group where m and n are both very large, and m ≤ n. This
is particularly suitable to describe a wireless sensor network.

The geographical distribution of nodes is described by a
density function f(x) where x is the position vector. Here we
allow x to be of any dimension; in the rest of this paper we let
it be a two-dimensional vector for ease of presentation, but it
does not hurt any generality. We assume f(x) is independent
of n and m. We also assume that 0 < ϵ1 ≤ f(x) ≤ ϵ2 where
ϵ1 and ϵ2 are both constants, i.e., a node has a positive
probability to be located at any point of this area.

To ensure the connectivity of the whole network, we set

the transmission range r = Θ

(√
logn
n

)
[16]. For all nodes,

r is the same and fixed. We assume that two nodes u and v
can communicate with each other directly if and only if the
Euclidean distance between them, duv, is no larger than r.
Every node can obtain its own geographical location, e.g.,
via the Global Position System (GPS). However, nodes do
not know the exact location of other nodes until they receive
messages containing that piece of information.

Table 2: System Parameter

n number of all nodes in the network

m number of receivers

r transmission range

rc search coverage range

LV length of temporary tree

LM length of multicast tree

4. ALGORITHM
In this section, we describe our Toward Source Tree algo-

rithm in detail. This algorithm consists of three phases.
In the first phase, the source broadcasts a message and
wakes up all receivers it chooses. In the second phase, ev-
ery receiver chooses the closest neighboring receiver that has
shorter Euclidean distances to the source node than the re-
ceiver node itself, and then a temporary tree can be estab-
lished among all receivers. However, till the end of this stage
cycles might exist. Hence we eliminate these cycles in the
third phase. In what follows we describe the process in de-

3

Table 1: Comparison of Distributed Algorithm for Approximate Steiner Construction

Algorithm Expected tree length Expected time Expected messages Assumptions

SPH [12]
2-approximation Steiner tree,

O(
√
m)

O(m
√

n
logn

) O(mn)
Shortest paths need to be known;

Applied in Point-to-point network.
KSPG [12] O(m

√
n

logn
) O(mn)

ADH [13] O(m
√

n
logn

) O(n logn+mn)

DA [14] O(
√
m) O(n2) O(mn2)

No shortest path information required;

Applied in Point-to-point network.

TST O(
√
m) O(

√
n logn) O(n)

No shortest path information required;

Applied in Wireless network.

tail, and we will use an example to illustrate how to generate
such a tree at the end of this section.

4.1 Phase 1: Identifying Receivers
Each node has a label indicating its role in the multicast

tree: “S” stands for the source and “R” for receivers. In
this phase, a message containing all receivers’ identifiers is
sent from the source so that all nodes in the network can
be aware whether they are receivers. Upon receiving this
message, receivers then wake up, label themselves with “R”
and be ready to participate in the multicast routing.The
source will also specify its own location in this message.
This step is necessary for multicast routing since no one

except the source knows which nodes the messages are des-
tinated for. In this phase, the broadcast information will
notify the nodes who are selected into the multicast group,
and all receivers will be awakened.

4.2 Phase 2: Connecting All Receivers
In this phase, we first build a “temporary tree” consist-

ing of only the multicast group members, and then find the
minimum-hop shortest path between each pair of members
that are directly connected in the “temporary tree”. All
multicast group members will be connected with the newly
added relays.
Step 1: Searching Receivers in the Neighorhood
In this step, each multicast member chooses an appropri-

ate neighbor to connect to. The neighboring member selec-
tion criteria is: each member chooses the closest one from
the set of members that have shorter Euclidean distances to
the source node than this node itself. If no such neighboring
member can be found, then this multicast member directly
connects to the source.
When a member tries to contact its neighbor members,

it is regarded as the sender that sends request message. Its
form is: <sender id, sender location, location of previous
hop, coverage range rc, node sequence, total hop H, path
length p>. Sender id is used to identify the multicast mem-
bers sending the request message, and path length can be
updated with the location of previous hop and current hop.
The coverage range rc sets the range within which the mul-
ticast member searches for its neighboring members. The
Euclidean distance between the sender and current node
can be calculated with sender location, and messages will
be discarded if the distance is larger than rc. Node sequence

Algorithm 1 Neighbor Request from Multicast Members

1: for all receiver R in a multicast group do
2: the number of request session: k ← 0
3: coverage range: rc ← r
4: time out interval: T0 ← Θ

(
2k logn

)
5: set the node sequence as {R}
6: total hop: H ← 0
7: path length: p← 0
8: forward the request message to its neighborhood
9: while no response is received when time is out for the

kth request session do
10: k ← k + 1
11: rc ← 2kr
12: Tk+1 ← 2Tk

13: set the node sequence as {R}
14: H ← 0
15: p← 0
16: forward the request message to its neighborhood
17: end while
18: end for

records in order the nodes through which this message has
passed, which acts as a guide for response from neighboring
receivers so that the response can be routed via the available
path. The hop count H is the number of hops the message
has passed through, and p is the path length the message
have been through when it reaches the current node.

In each search session, the member broadcasts the re-
quest message within search coverage range. The sender
sets an appropriate timeout interval. Once the sender re-
ceives replies from neighboring nodes, the search session
terminates. Then it enters step 2. However, if time runs
out and no reply is obtained, it means that no appropriate
neighboring members are found. The sender then doubles
its search range and initiates another search. In Algorithm
1, we show how a multicast group member connects to their
neighboring members or the source.

A node may receive more than one request message from
the same sender. If it is within coverage range, it will choose
the one with the fewest hops among all the messages. If the
numbers of hops are the same, it picks out the message with
the shortest path length. Then it modifies this message. It
adds itself to the node sequence, increases the hop count by

4

1 and calculate new path length given the location of the
previous hop. With these information updated, it forwards
the message. Algorithm 2 describes how nodes deal with
request messages in detail.

Algorithm 2 Request Forwarding

1: for all node u receiving request message do
2: dist = ∥ location of u - sender location ∥
3: if dist < rc then
4: add u to node sequence
5: H ← H + 1
6: newDist = ∥location of u - location of previous hop∥
7: p ← p + newDist
8: forward the request message to its neighborhood
9: if u is in the multicast group then
10: nodeSourceDist = ∥ location of u - source loca-

tion ∥
11: senderSourceDist = ∥ sender location - source lo-

cation ∥
12: if nodeSourceDist < senderSourceDist then
13: send respond message back to the sender
14: end if
15: end if
16: end if
17: end for

When a multicast member finds it closer to the source
than the sender of the request message, it might be chosen
as the neighbor by the sender. Therefore, this member will
choose a path to the sender and respond with the respond
message. The form of the respond message is: <sender id,
respondent id, node sequence, total hop H, path length p>.
The respond message can be routed with the path informa-
tion provided by the node sequence.
Step 2: Connecting to the Nearest Neighbor
With respond messages, every member selects the closest

neighbor. Once a neighbor is chosen, the connect message is
forwarded via the minimum-hop shortest path. The connect
message is used to establish a connection between nodes in
the multicast group. At the same time, all relay nodes on
the minimum-hop shortest path record this pair of mem-
bers, previous hop and the next hop on the path. When
all receivers send the connect message, a “temporary tree”
among all mutlicast group members including the source is
constructed.

4.3 Phase 3: Eliminating Cycles
In Phase 2, we construct a “temporary tree” made up of

multicast group members. However, when other nodes are
added to it as relays, cycles might be formed. In particular,
when paths connecting different pairs of multicast members
share the same relay nodes, such node may receive redun-
dant information, which indicates that cycles come into be-
ing. Therefore, we check the existence of cycles in this phase
and eliminate them if any.
Suppose a node u acts as a relay for k (k > 1) pairs of

nodes in the multicast group, which are directly connected
in the temporary tree, denoted as (R11, R12), (R21, R22),...,
(Rk1, Rk2). Let us assume that in each pair, Ri1 is closer
to source than Ri2 (1 ≤ i ≤ k). A relay stores its previous
and the next hop of the path from Ri1 to Ri2, and they are
denoted as PHi and NHi respectively. Then it chooses one
pair randomly, say, (Rj1, Rj2) and keeps the information:

(Rj1, Rj2, PHj , NHj). For other pairs (Ri1, Ri2) where
Ri1 ̸= Rj1, the relay modifies their information as (Rj1,
Ri2, PHj , NHi). Define a set Q, where Q = {q | q =<
Ri1, Ri2, PHi >, ∀ Ri1 ̸= Rj1}. Last, it sends “Eliminate
message Q” and its previous hops delete unnecessary edges
accordingly. In Algorithm 3, we show how to wipe out the
cycles.

Algorithm 3 Cycle Elimination

1: for all node u engaged in paths between k pairs of mem-
bers do

2: choose an integer j such that 1 ≤ j ≤ k
3: for all i such that 1 ≤ i ≤ k and i ̸= j do
4: forward Eliminate message Qi =< Ri1, Ri2, PHi >
5: end for
6: end for
7: for all node w receiving “Eliminate message Qi” do
8: if w is exactly PHi then
9: if w is not in the multicast group then
10: PHi ← previous hop of w on path (Ri1, Ri2)
11: forward the modified Qi to the previous hop
12: eliminate information: (Ri1, Ri2, PHi, NHi)
13: end if
14: end if
15: end for

4.4 Proof of Tree Topology
The previous subsections describe how we can connect

mutlicast group members using our TST algorithm. Now
let us prove that the topology constructed by TST algo-
rithm is exactly a tree. We first show that temporary tree
formed in the second phase has a tree topology in Lemma
4.1. But relays are added into the temporary tree to con-
nect receivers, which might result in the existence of cycles.
In Theorem 4.1 we show that cycle elimination can in fact
guarantee the tree topology.

Lemma 4.1. The temporary tree connecting m receivers
has a tree topology.

Proof. We prove it by contradiction. Suppose that a cy-
cle exists and k nodes are contained in this cycle, denoted by
n1, n2, ..., nk. All of them are multicast members. Without
loss of generality, we assume ni selects ni+1 as its neigh-
boring member, i = 1, · · · , k − 1, and that nk chooses n1

as its neighbor. According to the criteria of neighbor se-
lection, we know that ni+1 is closer to source than ni for
i = 1, · · · , k − 1. Therefore, nk must be closer to source
than n1. Due to the fact that nk’s selection is n1, we con-
clude that n1 must be closer to source than nk, which is a
contradiction. This concludes the proof.

Based on Lemma 4.1, we have the following theorem:

Theorem 4.1. The topology connecting nodes generated
by TST algorithm is a tree that spans all multicast group
members.

Proof. The existence of cycles means that some nodes
in the multicast tree may receive redundant messages, i.e.,
some nodes have more than one previous hop. For these
nodes, they send “Eliminate messages” and ensure that they
have only one previous hop. When all nodes in the multicast
tree have only one previous hop, no cycle exists.

5

 R

 R

 R

 R

 R

 R

 R

 R

 R

 S

(a) Building a temporary tree
spanning multicast group
members

(b) Adding relay nodes (c) Eliminating redundant
edges and maintaining the
topology of tree

(d) Constructing the multicast
tree with relays added

Figure 1: Steps of the TST algorithm

Multiple previous hops also indicate that multiple paths
may exist between two nodes. Once some previous hops are
unnecessary, the paths involving these hops can also be elim-
inated. Thus Algorithm 3 can eliminate these unnecessary
paths, and this completes our proof.

4.5 Illustration
We use an example to illustrate our TST algorithm. Nodes

are distributed in the unit square as shown in Figure 1(a).
Solid nodes represent source nodes labeled by “S”, or mul-
ticast members labeled by “R”. The hollow nodes can be
chosen as relays. The first step is to build a temporary tree
spanning all multicast members. The dashed lines denote
virtual connections between two members. Then nodes on
the minimal-hop shortest path are engaged as relays between
two neighboring members. They form the topology as shown
in Figure 1(b). Note that there exists a cycle marked with
dotted rectangular box. The last step is to eliminate unnec-
essary edges as is done in Figure 1(c). Finally we obtain the
multicast tree as is shown in Figure 1(d).

5. LENGTH ANALYSIS
The previous section described our Toward Source Tree

algorithm. In the next three sections, we will discuss its
performance in terms of tree length, time complexity, and
energy efficiency. In this section, we discuss the length of
TST. We first obtain the length of temporary tree, first as-
suming uniform distribution nodes and then extending to a
general setting. Next we explore the length of minimal-hop
path that connects two receivers. Combining the length of
temporary tree and the path, we can derive the upper bound
for the multicast tree length.

5.1 Temporary Tree in Uniform Distribution
We start by discussing the tree length of the temporary

tree.

Lemma 5.1. Assume nodes are uniformly distributed in
a unit square. The expected length of the temporary tree
spanning m receivers is upper bounded by c

√
m, where c =

5.622.

Proof. See Appendix A.

5.2 Temporary Tree in General Distribution
Based on the conclusions of tree length in uniform dis-

tribution, we further study the case that nodes are non-
uniformly distributed. We partition the unit square into k
small squares, wherem = k1+γ and 0 < γ < 1. We construct
trees among nodes in each square, and then connect nodes in
different cells so that all nodes in the network are connected.
For each square, the source is outside the square and we still
apply the TST algorithm for the tree construction. Lemma
5.2 can estimate the intra-square edge length, and we study
the inter-square edge length in Lemma 5.3. With both inter-
and intra- square edge estimation, we derive upper bound
for temporary tree length in general distribution.

Lemma 5.2. (Intra-square edges) Let m nodes be in-
dependently distributed in a unit square with density func-
tion f(x). The source S is located outside the square. Let
each node connect to the closest neighbor that has shorter
Euclidean distance to S than the node itself. If no such re-
ceiver exists, it doesn’t connect to other nodes. A tree can be
constructed among m nodes, and the expected length of such
a tree is upper bounded by c

√
m, where c = 5.622.

 S

S’

R

 x

 y

Figure 2: Approximate neighbor region when the
source is located outside the square

Proof. For those nodes that not closest to S, they can
always find another node to connect to. For the node that
is closest to S, it will be connected to by other nodes. We
can prove that the topology formed by m nodes is exactly a
tree with Lemma 4.1. We denote this tree as T .

There are two differences of this lemma from Lemma 5.1.
One is that the source is located outside the square, and

6

the other is that a node won’t connect to others when it
can’t find another one that has shorter Euclidean distance
to the source. Now we find a point S′ that is closest to
S in the boundary of square region, as is shown in Figure
2. With S′ as the source, a temporary tree as mentioned
in TST algorithm can be established spanning all nodes in
the network. We denote the temporary tree as T ′. In the
following we demonstrate that the tree length of T ′ can be
used to estimate the upper bound of length of T .
For a node R, we use NR to denote the regions where

nodes might be selected by R as a its neighbor. We use a
rectangular region as approximate neighbor region N ′

R, and
N ′

R ⊆ NR. The approximate neighbor region is the region
marked with parallel lines in Figure 2. We use the method
adopted in the proof of Lemma 5.1 to estimate the length of
T .
It can be observed that the approximate neighbor regions

are the same in both cases that we take S as the source
and that we take S′ as the source. There are some details
that need to be clarified. Firstly, when we only consider the
nodes in approximate neighbor region, the estimated tree
length is larger than actual length, because we ignore the
nodes that are closer to node R. Secondly, if neighbors exist
in the approximate region, the estimations of edge length
are the same for both T and T ′. Thirdly, if no neighbor is
found in approximate region for a node, we assume that it
doesn’t connect to others in T but it connects to the source
in T ′ in our calculation. From the analysis above, we can
conclude that length of T is upper bounded by the length of
T ′.
Also recall that in our proof of Lemma 5.1, and 5.622

√
m

is the upper bound for temporary tree length wherever S′

is. In summary, we can directly use estimated tree length in
Lemma 5.1 as the upper bound of the tree length of T . This
completes our proof.

Lemma 5.3. (Inter-square edges) Let m nodes be in-
dependently distributed in a unit square with density function
f(x). The unit square [0, 1] × [0, 1] can be partitioned into
k square cells with edge length of 1√

k
, where m = k1+γ and

0 < γ < 1. The length of inter-square edges connecting k
cells in the unit square is o(

√
m).

Proof. We know that the expected number of nodes in
each square cell is greater than m

k
ϵ1 = kγϵ1. To compute the

minimal distance between two nodes in adjacent squares, we
partition the cell with edge length of 1√

k
into smaller grids

with edge length of 1
kα , where α > 1

2
.

We claim that if α − γ < 1
2
, the minimal length between

two adjacent cells is in an order of o
(

1√
k

)
. This comes

from the observation that we can connect adjacent cells by
connecting nodes in adjacent grids whose edge length is 1

kα ,
as is shown in Figure 3. In this figure, the yellow and the
black squares are two adjacent cells with edge length of 1√

k
.

The blue grids contained in them are the smaller squares
with edge length of 1

kα . Green lines are used to show that
nodes in the adjacent grids are connected.

1/kα

1/k1/2 1/k1/2

Figure 3: Inter-square edges between nodes in adja-
cent square cells

As we can see from Figure 3, for two adjacent cells with
edge length of 1√

k
, kα−1/2 pairs of nodes in adjacent grids

might exist. Denote P1 as the probability that a node exists
in a grid with edge length of 1/kα. Since the area of each
square is very small, we can regard nodes in the same square
uniformly distributed. We have

P1 = 1− (1− 1

k2α−1
)
mϵ1
k .

Denote P2 as the probability that nodes exist in both of the
adjacent adjacent grids.

P2 = 1− P 2
1 .

There are kα−1/2 pairs of nodes in adjacent grids, and we
denote P as the probability that at least one pair exist. We
have

P = 1− P kα−1/2

2 .

Hence we have

P = 1− (1− (1− (1− 1

k2α−1
)
mϵ1
k)2)k

α−1/2

(1)

In order to let k squares connected by inter-square edges, it
should hold that P k → 1. Therefore, we need the following
condition

1− k−
1

kα−1/2 ≫ (1− (1− 1

k2α−1
)
mϵ1
k)2. (2)

The expression that r1(k)≫ r2(k) means that r2(k)/r1(k)→
0 as k →∞. Condition (2) is equivalent to condition (3).

log k

k−1/2+γ+αϵ1
≪ 1

k2α−1
, (3)

Condition (3) can be satisfied when α < γ + 1
2
. With

1
2
< α < γ+ 1

2
, we can evaluate P . By (1) it can be verified

that

P ∼ 1− exp(−2ϵ1k1/2−α+γ − ϵ1
log 2

k1/2−α). (4)

It is easy to show that P k → 1 with the expression (4), which
means such pairs of nodes exist for all adjacent cells with
high probability. Since (1− P) is exponentially decaying to
zero, the expectation of total path length needed to connect
k cells is

k1−αP k + k1/2k(1− P) ∼ k1−α = o(k1/2) (5)

Due to the fact that k = o(m), the expected path length for
inter-square connection is in the order of o(

√
m).

7

Lemma 5.4. Let m nodes be independently distributed
with density function f(x). The expectation for the total
length of temporary tree E[LV] is smaller than c

√
m. We

have E[LV] ≤ c
√
m
∫
x∈[0,1]2

√
f(x)dx, where c ≈ 5.622.

Proof. See Appendix B.

5.3 Path With Minimal Hops
Receivers are connected by the minimal-hop path. In this

part, we study the relationship between the path length and
Euclidean distance between two nodes.

Lemma 5.5. Let n nodes be independently and identi-
cally distributed over [0, 1]× [0, 1] with distribution function
f(x). Suppose that the Euclidean distance between two nodes
u and v is x. The following properties hold:

1. The expectation of fewest relays that are needed to con-
nect u and v converges to x

r
as n approaches ∞;

2. The length expectation of the path connecting uv and
involving the fewest relays converges to x.

Proof. See Appendix C.

5.4 Multicast Tree
We divide the [0, 1]× [0, 1] network region into k squares.

In each square, we construct a tree and connect nodes with
intra-square edges. Adjacent squares are connected by the
inter-square edges. All nodes are connected by intra- and
inter- square edges, and they can be used to estimate the
tree length.

Theorem 5.1. Let n nodes be independently and identi-
cally distributed in a unit square and their distribution satis-
fies the density function f(x). We construct a multicast tree
spanning m receivers as well as the source with TST algo-
rithm. Whenm and n are both very large, the expected length
of the tree is upper bounded by c

√
m
∫
x∈[0,1]2

√
f(x)dx, where

c = 5.622.

Proof. Denote ei,j as the edge connecting Receivers i
and j in the temporary tree TV , li,j as the length of the
minimal-hop path between the two receivers. Since redun-
dant edges will be eliminated, E(LM) ≤

∑
ei,j∈TV

E(li,j). And

the path length converges to Euclidean distance as network
size goes to ∞ according to Lemma 5.5. So we have:

E(LM) ≤ c
√
m

∫
x∈[0,1]2

√
f(x)dx. (6)

Remark: We derive an upper bound for the Toward Source
Tree, but it is not a tight bound. In Section 8, we will show
that TST algorithm has even better empirical performance
than our theoretical bound.

Lemma 5.6. Suppose Xi, 1 ≤ i < ∞, are independent
random variables with distribution µ having compact support
in Rd, d ≥ 2. If the monotone function ψ satisfies ψ(x) xα

as x→ 0 for some 0 < α < d, then with probability 1

lim
n→∞

n−(d−α)/dM(X1X2, ..., Xn) = (7)

c(α, d)

∫
Rd

f(x)(d−α)/ddx (8)

Here f denotes the density of the absolutely continuous part
of µ and c(α, d) denotes a strictly positive constant which
depends only on the power α and the dimension d [17].

Given a graph with some nodes and edges, building a min-
imal length tree spanning a subset of nodes with relays ap-
propriately added is formulated as Steiner Tree Problem. If
no relay nodes are allowed, then the tree with minimal length
is called minimal spanning tree. However, Steiner tree can
only optimize tree length by a constant ratio compared with
the minimal spanning tree.

Lemma 5.7. Let P be a set of n points on the Euclidean
plane. Let ls(P) and lm(P) denote the lengths of the Steiner
minimum tree and the minimum spanning tree on P respec-
tively. The inequality holds: [19]

ls(P) ≥
√
3

2
lm(P) (9)

Combining the two lemmas above, we can conclude that
the length of Steiner tree spanning m receivers is:

LST ≥
√
3

2
c1
√
m

∫
[0,1]2

√
f(x)dx (10)

Here c1 is the constant equal to c(1, 2) mentioned in Lemma
5.6. Roberts estimated that c1 = 0.656 [18].

From (6) and (10), we prove that the length of Toward
Source Tree is in the same order as that of Steiner tree, and
the difference between them is only a constant ratio.

6. TIME ANALYSIS
Now let us derive the time complexity of TST.

Theorem 6.1. Let n nodes be independently and identi-
cally distributed in unit square. The running time of TST
algorithm is O(

√
n logn).

Proof. There are three serial phases in TST algorithm,
so we discuss the time cost of each phase one by one.

In Phase 1, the messages containing location information
of the source are broadcast in the network. The furthest
distance between the source and another node is O(1), so
at most O

(
1
r

)
relays are needed for a message to reach one

node. In expectation, there are πr2ϵ2n = O
(
nr2
)
nodes

within transmission range of a node and hence a node has
to wait for O

(
nr2
)
time slots to transmit a message. The

time needed for Phase 1 is:

O

(√
n

logn

)
≤ E(t1) ≤ O (nr) . (11)

In Phase 2, the dominant time cost is searching for neigh-
boring receivers. In the kth search session, the coverage
range is 2kr. We need O

(
2k
)

relays to forward request
messages from one receiver to any other nodes within its
search coverage range. Since the coverage range does not
exceed

√
2, the number of search sessions cannot be more

than
⌈
log2

√
2

r

⌉
.

E(t2) ≤ O


⌈
log2

√
2

r

⌉∑
i=0

2inr2

 ≤ O(nr). (12)

In Phase 3, the worst case is that relays on the path whose
length is O(1) form cycles. Time for cycle elimination is

E(t3) = O

(
1

r
nr2
)

= O(nr). (13)

8

O(√n/log�n) O(√n log�n) O(c) Complexity

Approximation ratio
 of tree length

1

10

{Infeasible
 region

n

Figure 4: Relationship between tree length and time
complexity

The total running time is E(t) =
i=3∑
i=1

E(ti), so we have

O

(√
n

logn

)
≤ E(t) ≤ O(

√
n logn). (14)

which completes our proof.

Remark: For any algorithm to construct a multicast tree
among a group of nodes, broadcast in Phase 1 is necessary.
Since no node has a knowledge of the multicast group except
the source, such information has to be forwarded to every
node in the network so that they can know whether they
should participate in multicasting. The lower bound of time

for multicast tree construction is O
(√

n
logn

)
. Since TST

achieves the time complexity upper bounded byO(
√
n logn),

the minimal time cost to construct a multicast tree is also
upper bounded by O(

√
n logn). Hence the time complexity

of TST algorithm shares the same upper and lower bounds
as the minimal time cost, and the ratio between these two
bounds is only O(log n).
The length of multicast trees have a great influence on

communication quality in terms of transmission delay and
wireless interference. Construction of minimum-length trees
is an NP-hard problem, and takes exponential time. Ap-
proximate algorithms achieve larger tree length with lower
time complexity. Now we explore the relationship between
tree length and time complexity in Figure 4. Since the
lower bound of time needed for multicast tree construction
is O

(√
n

logn

)
, the region with time complexity smaller than

O
(√

n
logn

)
is infeasible. Accurate solution to Steiner tree

problem achieves the approximation ratio of 1 at the cost
of exponential time, and our algorithm achieves the ratio of
10. The approximation ratio of other algorithms like those
in Table 1 approaches 1 but they have larger time costs.

7. ENERGY EFFICIENCY
Energy is a primary consideration in wireless sensor net-

works since sensors are battery-powered and their energy is
limited. We consider the following factors: 1) the energy
consumed to construct such multicast trees; and 2) the en-
ergy needed to send messages along the tree constructed by
this algorithm. The former one is usually measured by the
amount of exchanged messages to run distributed routing

algorithms; and the latter directly depends on the number
of nodes participating in the transmission. We focus on both
aspects.

7.1 Message Complexity
The following theorem quantifies the message complexity

in TST.

Theorem 7.1. Let n nodes be independently and identi-
cally distributed in the unit square. The message complexity
of TST algorithm is O(n).

Proof. See Appendix D.

Remark: Since each node needs a message telling them
whether they are chosen as receivers, the lower bound of
message complexity is O(n). Hence TST algorithm is an
order-optimal solution in terms of message complexity.

7.2 Number of Forwarding Nodes
Since the transmission range is fixed, the number of trans-

mitters in the tree determines the energy consumption for
information propagation. We evaluate the number of for-
warding nodes in this subsection.

Theorem 7.2. Let n nodes be independently and identi-
cally distributed in the unit square. The number of forward-
ing nodes in the multicast tree is

NTST =

 Θ
(√

mn
logn

)
, m = O

(
n

logn

)
;

Θ(m), m = ω
(

n
logn

)
.

(15)

When m = O (n/ logn), the number of forwarding nodes is
order-optimal.

Proof. Let TV be the virtual tree, ei,j be an edge in the
virtual tree connecting two receivers i and j, and di,j be the
Euclidean distance between them. When m is small, relay
nodes form the dominant part of the forwarding nodes in
our multicast tree. The total number of transmitting nodes,

NTST in the Toward Source Tree is: NTST = Θ

(∑
ei,j∈TV

dij
r

)
= Θ

(√
m
r

)
. As m grows larger, receivers are close to each

other and thus fewer relay nodes are added. Therefore, re-
ceivers are dominant in the multicast tree, NTST = Θ(m).
We should discuss the number of forwarding nodes in two
cases, and there exists a critical value for m that determines
in which case it should be discussed. The critical value sat-
isfies: Θ

(√
mc

r

)
= Θ(mc), so mc = Θ

(
1
r2

)
.

Denote Nmin as the minimal number of relay nodes that
are engaged in propagating the messages from one source
to m receivers. [2] gives the lower bound of Nmin under the
assumption that all nodes are uniformly distributed. Now
we use its method and explore Nmin in the case of gen-
eral distribution. When m is small, the distance between
two receivers is large compared with the transmission range.

Nmin = Ω
(√

m
r

)
. This lower bound is achievable with our

algorithm, so Nmin = Θ
(√

m
r

)
. When m is very large,

there exist many receivers within the transmission range of
one node, so that one transmission can deliver messages to
a large number of receivers. In this case, we only need to
choose a connected dominating set from m receivers, and

9

200 400 600 800 1000

6

9

12

15

18

21

T
re
e
L
en
g
th

m (multicast group size)

Steiner Tree

Toward Source Tree

(a) Tree length comparison

0 50 100 150 200

0

2

4

6

8

10

M
es
sa
g
es
(x
1
0
0
0
)

m (multicast group size)

n=200

n=600

n=1000

(b) Message complexity

0 2000 4000 6000 8000

0

2000

4000

6000

8000

10000

N
o
d
e
n
u
m
b
er

m (multicast group size)

(c) Number of forwarding nodes

Figure 5: Algorithm evaluation when nodes are uniformly distributed

Nmin is exactly the size of minimum connected dominating
set. We will give the definitions of both connected dominat-
ing set and minimum connected dominating set.

Definition 7.1 (Connected dominating set). D is the
connected dominating set of a graph G if and only it satisfies
two properties:

1. Any node in D can reach any other node in D by a path
that stays entirely within D.

2. Every vertex in G either belongs to D or it is adjacent
to a vertex in D.

Definition 7.2 (Minimum connected dominating set).
MD is the minimum connected dominating set of graph G if
MD is the connected dominating set containing the smallest
number of nodes.

We still need to discuss Nmin in two cases. There also

exists a critical value md, and Θ(md) = Θ
(√

md

r

)
, so md =

Θ
(

n
logn

)
.

Nmin =

 Θ
(√

mn
logn

)
, m = O

(
n

logn

)
;

Ω
(

n
logn

)
, m = ω

(
n

logn

)
.

(16)

From (15) and (16), we can find when m = O
(

n
logn

)
, the

number of forwarding nodes in the multicast tree is optimal
in order sense.

Remark:When m = ω
(

n
logn

)
, the number of forwarding

nodes in TST tree may not be order-optimal. However, in
graph theory, finding the minimum connected dominating
set of a given graph is proved to be NP-complete [20]. And
it also requires global information of network topology. So
we consider it an acceptable sacrifice of energy to achieve
the feasibility and time-efficiency in practice.

8. PERFORMANCE EVALUATION
We perform extensive simulations to evaluate the empiri-

cal performance of Toward Source Tree algorithm, in terms
of the length of the multicast tree, message complexity and
the number of forwarding nodes engaged in the tree. We
mainly consider two common distribution patterns: uniform
distribution and normal distribution.

8.1 Uniform Distribution
We first consider nodes are uniformly distributed in a unit

square and transmission range is set to be r =
√

logn
n

. We

explore the effect of multicast group size m on the tree
length. Assuming that the network size is fixed as 1000,
we obtain the lengths of the Stenier tree and TST tree when
the value of m varies. The length of the Steiner tree can be
obtained via NewBossa in [21]. Two curves in Figure 5(a)
describe the relationship between m and the length of the
Toward Source Tree as well as the Steiner Tree. It is shown
that the length of TST tree is larger than that of the Steiner
Tree but quite close to it. According to simulation statistics,
the ratio of the tree length achieved by the two algorithms
is 1.114 on average. When nodes are uniformly distributed,
Toward Source Tree is a good approximation of the Steiner
Tree.

Then we evaluate the message complexity in the construc-
tion of TST tree, and explore the relationship among the
network size n, the multicast group size m and message
complexity. We set the network size n = 200, 600, 1000 re-
spectively, and record the quantity of exchanged messages
when multicast group size m varies. Different curves corre-
spond to different network sizes in Figure 5(b). As can be
seen in the figure, the quantity of exchanged messages in-
creases with the multicast group size as well as the network
size. It is quite intuitive that the larger network size can
result in more exchanged messages. Since the transmission
power necessary to maintain the connectivity is less in dense
networks than in sparse networks, more relays are engaged
in multicasting as the network size increases. Hence mes-
sages used to contact nodes and inquire routing information
become more.

We find that more messages are exchanged when we fix the
network size and add more multicast group members. This
result is not so intuitive. On the one hand, multicast group
members become closer to each other when the multicast
group size increases, so they need to search for the appropri-
ate neighbors in a smaller coverage range. Fewer nodes are
inquired within the coverage range, and fewer request mes-
sages are sent. On the other hand, when a multicast group
member looks for neighbors, more other members might find
they are closer to the source. Hence more response messages
might be sent back. Total messages increase as more nodes
join the multicast group.

10

200 400 600 800 1000

10

15

20

T
re
e
L
en
g
th

m (multicast group size)

Steiner Tree

Toward Source Tree

(a) Tree length comparison

0 50 100 150 200

0

2

4

6

8

10

M
es
sa
g
es
(x
1
0
0
0
)

m (multicast group size)

n=200

n=600

n=1000

(b) Message complexity

0 2000 4000 6000 8000

0

2000

4000

6000

8000

10000

N
o
d
e
n
u
m
b
er

m (multicast group size)

(c) Number of forwarding nodes

Figure 6: Algorithm evaluation when nodes satisfy normal distributed

Finally, we consider the number of forwarding nodes en-
gaged in multicasting. To derive the statistical properties
of TST, we set the network size as 100, 000. In Figure 5(c),
when the multicast group is small, the first part of the curve
indicates that the number of forwarding nodes is O(

√
m).

As there are more multicast group members, the number of
forwarding nodes grows linearly with the group size.

8.2 Non-uniform Distribution
We randomly choose the location of source, xs, within

the unit square first. For the case of non-uniform distribu-
tion, we consider that nodes satisfy the normal distribution:

f(x) = 1√
2π
e−

∥x−xs∥2
2 , where ∥x− xs∥ is the Euclidean dis-

tance between the node and the source. It is possible that
the nodes are scattered outside unit square during simula-
tions. If this happens, we relocate these nodes until they are
within this unit square.
We evaluate the TST algorithm still in terms of tree length,

message complexity and the number of forwarding nodes.
We find the results are quite similar to those in the uniform
distribution. In Figure 6(a), the length of TST tree is only
a little larger than the optimal length in our simulations.
The statistics show that the ratio between them is 1.110 on
average. As for the message complexity, Figure 6(b) shows
that more messages are exchanged among more multicast
group members or in denser networks, and the quantity of
messages is still O(n). As is shown in Figure 6(c), the num-
ber of transmitting nodes in the multicast tree is linear with√
m, and becomes linear with m when more nodes partici-

pate in the multicast group assuming that the network size
keeps unchanged.

9. CONCLUSION
In this paper, we propose a novel algorithm, which we

call Toward Source Tree, to generate approximate Steiner
Trees in wireless sensor networks. The TST algorithm is a
simple and distributed scheme for constructing low-cost and
energy-efficient multicast trees in the wireless sensor net-
work setting. We prove its performance measures in terms
of tree length, time complexity, and energy efficiency. We
show that the tree length is in the same order as, and is in
practice very close to, the Steiner tree. We prove its running
time is the shortest among all existing solutions. We prove
that its message complexity and the number of nodes that

participate in forwarding are both order-optimal, yielding
high energy efficiency for applications.

10. REFERENCES
[1] M. Segal J. Crowcroft and L. Levin. Improved structures

for data collection in wireless sensor networks. In Proc. of
IEEE INFOCOM, pages 1375–1383, 2014.

[2] H. R. Sadjadpour Z. Wang and J. J. Garcia-Luna-Aceves.
A unifying perspective on the capacity of wireless ad hoc
networks. In Proc. of IEEE INFOCOM, 2008.

[3] X. Y. Li. Multicast capacity of wireless ad hoc networks.
IEEE/ACM Trans. Netw., 17(3):950–961, 2009.

[4] X. Liu S. Shakkottai and R. Srikant. The multicast
capacity of large multihop wireless networks. IEEE/ACM
Trans. Netw., 18(6):1691–1770, 2010.

[5] U. Varshney. Multicast over wireless networks.
Communications of ACM, 45(12):31–37, 2002.

[6] P. M. Ruiz J. A. Sanchez and I. Stojmenovic. Gmr:
Geographic multicast routing for wireless sensor networks.
In Proc. of IEEE SECON, pages 20–29, 2006.

[7] J. A. Sanchez and P. M. Ruiz. Lema: Localized
energy-efficient multicast algorithm based on geographic
routing. In Proc. of 31st IEEE Conference on Local
Computer Networks, pages 3–12, 2006.

[8] M. Bartosz B. Musznicki and P. Zwierzykowski.
Dijkstra-based localized multicast routing in wireless sensor
networks. In Proc. of IEEE CSNDSP, pages 1–6, 2012.

[9] G. Morabito L. Galluccio and S. Palazzo. Geographic
multicast (gem) for dense wireless networks: protocol
design and performance analysis. IEEE/ACM Trans.
Netw., 21(4):1332–1346, 2013.

[10] T. Rothvoss J. Byrka, F. Grandoni and L. Sanità. Steiner
tree approximation via iterative randomized rounding.
Journal of the ACM, 60(1):6, 2013.

[11] R. M. Karp. Reducibility among Combinatorial Problems.
Springer, 1972.

[12] F. Bauer and A. Varma. Distributed algorithms for
multicast path setup in data networks. IEEE/ACM Trans.
Netw., 4(2):181–191, 1996.

[13] G. Lo. Re L. Gatani and S. Gaglio. An efficient distributed
algorithm for generating multicast distribution trees. In
Proc. of IEEE ICPP Workshops, pages 477–484, 2005.

[14] L. M. A. Drummond M. Santos and E. Uchoa. Distributed
dual ascent algorithm for steiner problems in networks. In
Anais do Simpósio Brasileiro de Redes de Computadores,
pages 381–396, 2007.

[15] et al. H. Park, J. Lee. Distributed multicast protocol based
on beaconless routing for wireless sensor networks. In Proc.
of IEEE ICCE, pages 522–523, 2013.

11

x

 y

Source

Receiver

Figure 7: Two-dimensional coordinate system, ac-
tual and approximate neighbor regions

[16] M. D. Penrose. A strong law for the longest edge of the
minimal spanning tree. The Annals of Probability,
27(1):246–269, 1999.

[17] J. M. Steele. Growth rates of euclidean minimal spanning
trees with power weighted edges. The Annals of
Probability, 16(4):1767–1787, 1988.

[18] F. D. K. Roberts. Random minimal trees. Biometrika,
55(1):255–258, 1968.

[19] F. Hwang D. Du. A proof of the gilbert-pollak conjecture
on the steiner ratio. Algorithmica, 7(1):121–135, 1992.

[20] R. G. Michael and S. J. David. Computers and
Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman, 1978.

[21] Dept. of CS at Princeton. Bossa.
http://www.cs.princeton.edu/~rwerneck/bossa/, July
2014.

APPENDIX
A. TREE LENGTH IN THE UNIFORM CASE
When we analyze the temporary tree made up of the

source and m receivers, transmission range can be ignored
since it does nothing with the temporary tree construction.
We establish a two-dimensional coordinate system shown in
Figure 7. Let the source be the origin, and X-axis as well
as Y-axis parallel to the square edge. The whole network is
divided into m square cells, and the edge length of each cell
is 1√

m
. In the coordinate system, the edge length is normal-

ized to be 1, so the intersections in the network have integer
coordinates. We use the coordinate of the vertex that is far-
thest from the origin in the square cell as the the coordinate
of this cell, and hence cells also have integer coordinates.
In Figure 7, the red nodes is the source node S and the

blue node is the receiver node R whose coordinate is (x, y).
Without loss of generality, suppose that x and y are both
positive. Set the radius to be the Euclidean distance between
S and R, and draw two circles with the center in S and in R
respectively. The intersected region of the unit square and
two circles’ overlapping area is the shaded region in Figure
7. According to criteria for neighboring receiver selection,
the shaded region in figure is where the possible neighbor
receivers of R are located. If no receiver lies in this shaded
area, R can only connect to S directly.
Now we illustrate how the neighbor is selected by the re-

ceiver in a more detailed way. Suppose that the coordinate
of the possible neighboring receiver is (a, b) (a and b don’t
need to be integers). And there are three conditions that
should be satisfied:

a2 + b2 < x2 + y2,

(x− a)2 + (y − b)2 < x2 + y2

(a, b) is within the unit square

(17)

Let NR denote all the nodes whose coordinates satisfy the
conditions above, i.e., NR = {(a, b) | node (a,b) might be
connected to by the receiver R}. For simplicity of analysis,
we reduce the size of the set NR and get a new set N ′

R, an
approximate neighbor region which is the rectangular region
marked with parallel lines, which is shown in Figure 7.

N ′
R = {(a, b)|0 ≤ a ≤ ⌊x⌋ , 0 ≤ b ≤ ⌊y⌋} (18)

Now nodes in N ′
R are nodes we consider possible to be cho-

sen as neighbors by R in our analysis later. Note that in our
algorithm, it is possible that some nodes in other cells with
coordinates not in N ′

R might also be connected to by the re-
ceiver R. With the constraints above, the estimated length
of temporary tree among m receivers is larger than that of
the tree built with our algorithm since we ignore some nodes
that are close to receiver R. Upper bound of the temporary
tree length built with our algorithm can thus be derived.

Besides shrinking the neighbor region, we also rearrange
the nodes in each cell. Suppose that the coordinate of a
node is (a, b), then we move it to the point with coordinate
(⌊a⌋ , ⌊b⌋). All nodes are now farther from receiver R after
rearrangement. LetMR be the set of all receivers and pi,j be
the probability that the node in the cell whose coordinate is
(i, j) is chosen by the receiver R as a neighbor to connect to.
Let pS be the probability that the receiver directly connects
to the source.

W assume that the nodes in cell (i, j) is chosen if all cells
(i′, j′) are empty, where i ≤ i′ ≤ ⌊x⌋ and j ≤ j′ ≤ ⌊y⌋
(but i = i′ and j = j′ are not satisfied at the same time).
This assumption can also make the edge length estimation
larger than the actual edge length. Since some nodes that
are closer to the receiver might also be chosen as a neigh-
bor receiver but they are not taken into consideration under
this assumption, the estimated probability that one node is
chosen is larger than actual probability.

pi,j ≤ p(all (i′, j′)s are empty)
− p(all (i′, j′)s and (i, j) are empty)

≤
(
1− (⌊x⌋+ 1− i)(⌊y⌋+ 1− j)− 1

m

)m−1

−
(
1− (⌊x⌋+ 1− i)(⌊y⌋+ 1− j)

m

)m−1

(19)

We define new variables a and b as: a = ⌊x⌋ + 1 − i and
b = ⌊y⌋ + 1 − j. Note that a and b are both integers. We
can obtain the following expression with (19).

pi,j =

{
cm−1
1 − cm−1

2 (0 < c2 < c1 < 1), ab = Θ(m);

e−
m−1
m

ab(e
m−1
m − 1), ab = o(m).

(20)

Because
√
m(cm−1

1 − cm−2
2)→ 0, we can omit the case that

12

ab = Θ(m) when we calculate the length expectation.

pS ≤ (1− ⌊x⌋ ⌊y⌋
m

)m−1. (21)

The expected length of temporary tree is:

E(LV) ≤ 1√
m

∑
R∈MR

E (

⌊x⌋∑
i=1

⌊y⌋∑
j=1

pi,j√
(x− i+ 1)2 + (y − j + 1)2 + pS

√
x2 + y2) (22)

Combine (20), (21) and (22), and we have

E(LV) ≤ 1√
m

∑
R∈MR

E (

⌊x⌋∑
a=1

⌊y⌋∑
b=1

e−
m−1
m

ab(e
m−1
m − 1)

√
(a+ 1)2 + (b+ 1)2 + e−

m−1
m

⌊x⌋⌊y⌋√x2 + y2)
(23)

For the first part in (22), we use the integration to evaluate
its pattern.

⌊x⌋∑
a=1

⌊y⌋∑
b=1

e−
m−1
m

ab
√

(a+ 1)2 + (b+ 1)2

≤
∫
(a,b)∈[1,x]×[1,y]\[1,2]×[1,2]

e−
m−1
m

ab(a+ b)dadb

+

⌊y⌋∑
b=2

e−
m−1
m

b
√

22 + (b+ 1)2 +

⌊x⌋∑
a=2

e−
m−1
m

a
√

22 + (a+ 1)2

+ e−
m−1
m · 2

√
2 + e−4m−1

m · 3
√
2 (24)

≤ 2η − ηx − ηy − ηx

x
− ηy

y
+
ηxy

x
+
ηxy

y

+ w1(x, y) + 2
√
2η + 3

√
2η4 −

∫ 2

1

∫ 2

1

e−
m−1
m

ab(a+ b)dadb.

(25)

Here η = e−1+1/m in (25). Inequality (24) holds because
when a ≥ 2 and b ≥ 2 (a, b does not equal to 2 at the

same time),
√

(a+ 1)2 + (b+ 1)2 ≤ a+b. Then we take the
components for summation at a = 1 and b = 1 . We must
add the value at a = b = 2 since (24) does not hold at this
point. The substraction in (25) comes from the fact that
we have already add this value at a = b = 2, so we must
subtract the corresponding term in this part. For clarity, we
replace some expressions with functions.

J(x, y) = 2η − ηx − ηy − ηx

x
− ηy

y
+
ηxy

x
+
ηxy

y
,

w1(x, y) =

⌊y⌋∑
b=2

ηb
√

22 + (b+ 1)2 +

⌊x⌋∑
a=2

ηa
√

22 + (a+ 1)2,

w2(x, y) = η⌊x⌋⌊y⌋
√
x2 + y2,

c3 = 2
√
2η + 3

√
2η4 − (2e+ 1)(e− 1)2/e4.

The expected length of temporary tree can be expressed as:

E(LV) ≤ e
m−1
m − 1√
m

∑
R∈MR

E(J(x, y) + w1(x, y) + c3)

+
1√
m

∑
R∈MR

E(w2(x, y)) (26)

The coordinate (x,y) of a receiver is dependent on the loca-
tion of source. The farther the receiver is from the source,
the larger the value of J(x, y) + w1(x, y) is. We can obtain
the maximum of E(J(x, y)+w1(x, y)), when the source is lo-
cated at one of the square’s four vertices. Thus the receiver
coordinate ranges from (0, 0) to (

√
m,
√
m).

For E(w1(x, y)), there exist constraints for both x and y.
That is, x ≥ 2 and y ≥ 2. So the integral of w1(x, y) is
written as:

1√
m

∑
R∈MR

E(w1(x, y)) ≤
1√
m

∫ √
m

2

∫ √
m

2

w1(x, y)dxdy.

(27)

We use discrete summation to evaluate the expression on
the right side of the inequality (27).∫ √

m

2

∫ √
m

2

w1(x, y)dxdy ≤ 2

4∑
a=2

ηa
√

(1 + a)2 + 4

+

x∑
a=5

ηa(a+ 4/3) +

y∑
b=5

ηb(b+ 4/3) (28)

It’s not hard to check the summation on the right side of
(28). We find that

1√
m

∫ √
m

2

∫ √
m

2

w1(x, y)

≤ 2(

4∑
i=2

e−i
√

(1 + i)2 + 4 +
19e− 16

3e4(e− 1)2
)
√
m. (29)

Wherever the source is, the part, 1√
m

∑
R∈MR

E(w2(x, y)),

can be ignored. This is because

1√
m

∑
R∈MR

E(w2(x, y))

≤ 1√
m

∫ √
m

0

∫ √
m

0

e−
m−1
m

⌊x⌋⌊y⌋(x+ y)dxdy ≈ 2

e
√
m
→ 0

(30)

In the end, we consider the part E(J(x, y)) in E(LV).

1√
m

∑
R∈MR

E(J(x, y))

≤ 1√
m

∫ √
m

0

∫ √
m

0

J(x, y)dxdy ∼ 2√
m

(
√
m− 1)2η ∼ 2

e

√
m

(31)

With (29), (30) and (31), we can derive the upper bound of
E(LV) by (26).

E(LV) ≤ 5.622
√
m. (32)

This completes our proof.

B. TREE LENGTH IN THE GENERAL DIS-
TRIBUTION

We partition the unit square into k square cells with edge
length of 1√

k
. m = k1+γ and 0 < γ < 1. In each cell, the

expected number of points is approaching infinity (actually
is greater than mϵ1/k).

First, we prove an assertion for a scaled uniform distribu-
tion. With Lemma 5.1, we know that length of temporary

13

tree spanning m receivers is upper bounded by c
√
m, when

nodes are uniformly distributed in a unit square. In a scaled
square region with edge length of 1√

k
, the expected length

of temporary tree is smaller than c√
k

√
m.

We first construct a tree consisting of intra-square and
inter-square edges. Intra-square edge means that a receiver
chooses to connect to another receiver located in the same
square, while inter-square edge means that a receiver con-
nects to another located in a different square.
Let’s first consider the intra-square edges. Source is lo-

cated inside one of k cells, and outside (k − 1) cells. For
the cell containing the source, we build a temporary tree
among all nodes in it. For other cells, we let each node in it
connect to the closest neighbor that has shorter Euclidean
distance to source and it doesn’t connect to any nodes if no
such neighbor exists. As is proved in Lemma 4.1 and Lemma
5.3, trees can be established within these k cells. Then we
consider the inter-square edges. For any cell, there is always
an adjacent cell that is closer to source.
We let a node from each cell connect to another node in ad-

jacent cells and the inter-square edge between them has the
minimal distance among all node pairs. So all squares are
connected by inter-square edges. With intra-square edges
and inter-square edges, all of m receivers form a tree topol-
ogy. We denote this tree as Ta.
We consider the length of intra-square edges within the

unit square. Suppose that Sqi is one of k cells in the set
{Sq1, · · · , Sqk} and its edge length of 1√

k
. According to

Lemma 5.1 and Lemma 5.3, we can conclude that total
length of intra-square edges within Sqi is is upper bounded

by c√
k

√
m
∫
Sqi

f(x)dx with scaling method. Expected length

of intra-square edges within the whole network can be ob-

tained by the summation:
k∑

i=1

c 1√
k

√
m
∫
Sqi

f(x)dx. Since

the integration over the small square is smaller than
1
k
maxx∈Sqi f(x). We take the square root of this expres-

sion and by the definition of Riemann-Stiejies integration,
we know that the sum is

k∑
i=1

c
1√
k

√
m

∫
Sqi

f(x)dx ≤ c
√
m

∫
x∈[0,1]2

√
f(x)dx. (33)

The total length of inter-square edges within the unit
square is o(

√
m) as we have proved in Lemma 5.3. So the

expected length of Ta is upper bounded by

c
√
m

∫
x∈[0,1]2

√
f(x)dx.

Based on neighbor selection criteria in TST algorithm,
each node always connects to the closest node that has shorter
Euclidean distance to the source. However, for intra-square
edges in Ta, the node are also required to connect to the
neighbor in the same square. More limitations are imposed
on neighbor selection, so the edge length between two nodes
might be larger than that in temporary tree. Therefore, the
length of Ta can be regarded as the upper bound of that of
temporary tree.
The expected length of temporary tree is:

E(LV) ≤ c
√
m

∫
x∈[0,1]2

√
f(x)dx. (34)

This completes our proof.

C. MINIMUM HOP PATH
From work [16], we know that transmission range is set

as r = Θ

(√
logn
n

)
, in order to ensure that network is con-

nected. There are about Θ(log n) nodes within transmission
range of one node. Finding the path with minimal hops be-
tween two nodes can be regarded as a connectivity problem,
which is a Poisson process.

Since the expression for the area where two circles inter-
sect is hard to estimate, we estimate it in the infinite norm
without affecting the results. The transmission range is set

(a) 2-norm (b) infinite-norm

Figure 8: We estimate the probability of points on
the red line instead of green arc

as: r =
√

2
ϵ1

√
logn
n

. There are two receivers u and v, and

the left circle in Figure 8(a) shows the transmission range of
u. The circumscribed square is embedded properly in this
left circle. The right circle with center in v has a radius of
x. The intersected part of square and the right circle is the
green arc. For simplicity, we use the red line rather than the
green arc, and this will overestimate the path length. We
can use∞-norm in Figure 8(b) for estimation instead of the
2−norm.

Let A be the event that next point exists with distance
s, and B be the event that there’s a point within the trans-
mission region. It’s easy to see that

P (A|B) =
e−2nϵ1(r−s)r(1− e−2nϵ1sr)

1− e−2nϵ1r2

=
e−2nϵ1r

2

1− e−2nϵ1r2
(e2nϵ1sr − 1) (35)

Denote Er(x) as the expected number of relay nodes on the
path with minimal hops to a receiver with distance x. Here
we consider that r in the ∞ norm are contained by

√
2r in

the 2−norm, so we have the following functional equation

when plugging in r = ϵ1
− 1

2

√
logn
n

:

Er(x) =

∫ r

0

(1 + Er(x− s))
2nϵ1re

−2nϵ1r
2

1− e−2nϵ1r2
e2nϵ1srds

=
2nϵ1r

n2 − 1

∫ r

0

(1 + Er(x− s))e2nsrds

= 1 +
2nϵ1r

2

n2 − 1

∫ 1

0

Er(x− αr)e2nϵ1r
2αdα

= 1 +
2 log n

n2 − 1

∫ 1

0

Er(x− αr)n2αdα (36)

Clearly the lower bound of hop count is x/r. As for the
upper bound of hop count, Er(x), we can also prove that

14

Er(x) ≤ d(x/r) + 1 for a fixed d > 1 and a large enough
n by induction. We know that Er(x) = 1 when x ∈ (0, r),
so it is satisfied that Er(x) ≤ d(x/r) + 1. Suppose that
Er(x− αr) ≤ dx−αr

r
+ 1, we can show

Er(x) = 1 +
2 logn

n2 − 1

∫ 1

0

Er(x− αr)n2αdα

≤ 2 +
2 logn

n2 − 1

∫ 1

0

d
x− αr
r

n2αdα

= 2 + d
x

r
− d n2

n2 − 1
+

d

2 log n

≤ d(x/r) + 1 (37)

Inequality (37) holds for

d ≥ 2 log n(n2 − 1)

n2(2 log n− 1) + 1
. (38)

We can conclude that Er(x) converges to x/r uniformly
when n is very large. The first property has been proved.
And because the transmission range is r, the total tree length
converges to x. So the second property also holds.

D. MESSAGE COMPLEXITY

 x

 y

Source

Receiver

1

3

4

5

6

2

(a) Approximate neighbor region

1

2

5

6

3

4

 Receiver

(b) Rear-
rangement of
cells

Figure 9: Shrinking neighbor region and rearranging
cells

We only consider the approximate neighbor region shown
by the shaded area in Figure 9(a) as in length analysis. We
rearrange the cells in the feasible region along with the nodes
in these cells, and put them in a column. We first compare
x-coordinates of the cells, and cells with larger x-coordinates
will be put at the top of the column. If they have the same x-
coordinates, cells with larger y-coordinates will be put at the
top. Figure 9(b) illustrate this arrangement. We have ⌊x⌋×
⌊y⌋ cells rearranged in a column. These cells are numbered
from 1 to ⌊x⌋ × ⌊y⌋. After rearrangement, it is easy to see
that the actual distance between nodes in the ith cell and
the receiver R must be smaller than i+3√

m
.

There are five types of messages are exchanged in TST
algorithm, and their quantities are denoted as Msgi respec-
tively (1 ≤ i ≤ 5). In phase 1, all nodes participate in
message propagation, so E(Msg1) = n.
In Phase 2, three types of messages are sent during this

process: request message, respond message and connect mes-

sage. We rearrange the cells as in Figure 9(b). The ith cell
is represented by gi, and the probability that one node is
located in the ith cell is assumed as p(gi). The probability
that a node in the ith cell is chosen as a neighbor by the
receiver (x, y) is denoted as pi. We have

pi = (1−
i−1∑
j=1

p(gi))
m−1 − (1−

i∑
j=1

p(gi))
m−1

= e
−(m−1)

i−1∑
j=1

p(gj)

− e
−(m−1)

i∑
j=1

p(gj)

≤ e−
m−1
m

(i−1)ϵ1 − e−
m−1
m

iϵ2 (39)

When no appropriate receivers are found in this region, re-
ceiver R connects to the source directly. Its probability is
denoted as pS .

pS ≤ (1− ⌊x⌋ ⌊y⌋
m

ϵ1)
m−1 (40)

If the receiver in the ith cell is selected by receiver R, k
search sessions are needed in total for receiver R, where k =⌈
log2

i+3√
mr

⌉
.

E(MsgR2) ≤
⌊x⌋⌊y⌋∑
i=1

pi

⌈
log2

i+3√
mr

⌉∑
k=0

π(2kr)2ϵ2n

+

⌈
log2

√
x2+y2
√

mr

⌉
∑
k=0

pSπ(2
kr)2ϵ2n (41)

Combining (39), (40) and (41), we have

E(MsgR2) ≤ O

 n

m

⌊x⌋⌊y⌋∑
i=1

(e−
m−1
m

(i−1)ϵ1 − e−
m−1
m

iϵ2)(i+ 1)2


+O

(n
m
e−

m−1
m

⌊x⌋⌊y⌋ϵ1(x2 + y2)
)

(42)

It is easy to prove that

⌊x⌋⌊y⌋∑
i=1

(e−
m−1
m

(i−1)ϵ1 − e−
m−1
m

iϵ2)(i+ 1)2 = O(1), (43)

e−
m−1
m

⌊x⌋⌊y⌋ϵ1(x2 + y2) = O(1). (44)

Combining (42), (43) and (44), we can obtain

E(MsgR2) = O
(n
m

)
, (45)

so the expected number of request messages is: E(Msg2) =∑
R∈MR

E(MsgR2) = O (n).

Next comes respond message. If the neighbor search ends
up in the kth session, the expected number of responding

receivers is at most m
3
4
π(2kr)2ϵ2

1− 1
4
π(2kr)2ϵ2

≤ π(2kr)2ϵ2m. If the re-

sponse is from the receiver in the ith cell, as we have proved,
there are O(i+1√

mr
) relays on the minimal-hop path connect-

15

ing two receivers.

E(MsgR3) ≤ O

⌊x⌋⌊y⌋∑
i=1

pi
(
π(2kr)2ϵ2m

)
2k
∣∣∣∣
k=

⌈
log2

i+3√
mr

⌉


+O

pS (π(2kr)2ϵ2m) 2k∣∣∣∣
k=

⌈
log2

√
x2+y2
√

mr

⌉


≤ O

⌊x⌋⌊y⌋∑
i=1

(
e−

m−1
m

(i−1)ϵ1 − e−
m−1
m

iϵ2
) (i+ 3)3√

mr


+O

(
e−

m−1
m

⌊x⌋⌊y⌋ϵ1 (x
2 + y2)

3
2

√
mr

)

≤ O
(

1√
mr

)
. (46)

The total number of respond messages is:

E(Msg3) =
∑

R∈MR

E(MsgR2) = O

(√
m

r

)
. The last type of message in the second phase is con-
nect message, it can not be larger than respond messages.

E(Msg4) ≤ O
(√

m
r

)
.

In phase 3, cycle elimination, all relays participate in for-
warding eliminate message for the worst case.

E(Msg5) ≤ O (n) . (47)

The total message complexity is

E(Msg) = O(n). (48)

This completes our proof.

