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Abstract—Crowdsourcing systems allocate tasks to a group
of workers over the Internet, which have become an effective
paradigm for human-powered problem solving such as image
classification, optical character recognition and proofreading.
In this paper, we focus on incentivizing crowd workers to
label a set of binary tasks under strict budget constraint. We
properly profile the tasks’ difficulty levels and workers’ quality in
crowdsourcing systems, where the collected labels are aggregated
with sequential Bayesian approach. To stimulate workers to
undertake crowd labeling tasks, the interaction between workers
and the platform is modeled as a reverse auction. We reveal
that the platform utility maximization could be intractable, for
which an incentive mechanism that determines the winning bid
and payments with polynomial-time computation complexity is
developed. Moreover, we theoretically prove that our mechanism
is truthful, individually rational and budget feasible. Through ex-
tensive simulations, we demonstrate that our mechanism utilizes
budget efficiently to achieve high platform utility with polynomial
computation complexity.

I. INTRODUCTION

In recent years, online crowdsourcing systems such as
Amazon Mechanical Turk (MTurk) have become flourish-
ing for human computation. The paradigm of crowdsourcing
provides access to a group of workers over the Internet
who are available to solve problems such as image labeling,
optical character recognition and proofreading. Projects like
reCAPTCHA [1] have made it possible to harness human
resources solving learning problems. MTurk establishes a
market where a “crowdsourcer” can submit batches of small
tasks, and any workers can pick them up in exchange for
monetary rewards.

Incentivizing adequate workers to undertake labeling tasks
is crucial to the system. Several platforms provide work-
ers with non-monetary incentives like entertainment [2], [3];
however, incentivizing the crowd with monetary payments is
more effective [4], [5], [6], [7], where the task allocation and
pricing are vitally important. Since the crowdsourcer often
faces budget constraints and workers are diverse in their skills
and backgrounds, designing effective allocation and pricing
schemes is non-trivial. Karger et al. allocate tasks with a
random bipartite graph [8]. However, they first assume that
the platform can access any worker repeatedly, which is not
true in practice. Secondly, they merely price each task with
equal amount of monetary rewards, which is not enough to
attract diverse workers. Yang et al. propose two types of

incentive mechanisms for maximizing the utility of the mobile
sensing applications [9]. Incentive mechanisms for mobile
crowd sensing can hardly be applied to the crowd labeling
system, where it is inappropriate to evaluate the contribution
of the workers by working time.

In practice, the labels provided by the crowd could be very
noisy. On one hand, the crowd is anonymous and transient.
They may arbitrarily submit their labeling answers oblivi-
ous to the question, therefore get rewards free of effort by
providing useless labels. On the other hand, crowd workers
are of different levels of expertise and tasks may vary in
difficulty levels. Some workers may provide more reliable
labeling answers than others. It is still an open question how
to effectively aggregate collected labels. Karger et al. use a
probabilistic model to analyze the crowd quality and aggregate
collected labels with low-rank approximation [10]. Raykar et
al. manage to improve the labeling accuracy by discriminating
workers with scores [11]. These label aggregation methods,
however, do not mention how the incentive mechanisms should
be designed correspondingly.

In this paper, we design a truthful and budget feasible
mechanism to incentivize crowd workers to undertake the
binary labeling tasks, where the labeling answer is either 0
or 1. The interaction between the platform and the workers is
modeled as a reverse auction. The platform publicizes a set
of labeling tasks, after which workers can submit bids for a
subset of tasks according to their preference. For performing
a task, each worker has a private cost and claims it publicly in
the bids. The platform then determines the set of winning bids
by which the labeling tasks are allocated to the worker. Each
winning bid is paid with an amount of money in exchange for
the labeling answer.

The mechanism mainly consists of winning bid allocation
scheme and payment scheme, which together guarantee truth-
fulness, individual rationality, and budget feasibility. With our
mechanism, each worker’s optimal strategy is to disclose the
true cost in his bids. Moreover, the total payment determined
by the mechanism is under strict budget constraint for the sake
of the crowdsourcer. The mechanism is individual rational in
the sense that the payment must cover the cost. To profile
the labeling difficulty, we propose to associate each task with
a soft label, which is the probability that the task is labeled
as 1 by a reliable worker [12]. To recognize the quality of



crowd workers, we propose to use the one-coin model. The
Bayesian sequential approach is applied to update the soft
labels and quality parameters based on crowd answers, so
that the platform determines the true answers of tasks by
calculating the posterior with collected labels. The platform
utility is defined as the difference between the prior and the
posterior of all soft labels.

Adapting label aggregation into the reverse auction based
mechanism is non-trivial. To this end, we overcome the
following two challenges: 1) The platform utility maximization
can be formulated into a Markov Decision Process (MDP),
the optimal solution of which can be found by backward
induction that is mathematically intractable. 2) The payment
scheme should guarantee truthfulness and budget feasibility
simultaneously. We design a winning bid allocation scheme
that is computational efficient. For better representation, we
first assume the workers are uniformly perfect. Then we further
apply our allocation scheme to the more general case where
the workers are of diverse quality. Our payment scheme is de-
veloped by adapting the budget feasible mechanism proposed
by Singer [13].

We summarize our contributions as follows.
• We model the interaction between the platform and crowd

workers as a reverse auction in the setting of binary
labeling tasks. We introduce the soft label and the quality
parameter to profile tasks and workers, respectively. The
maximization of the platform utility is formulated into
a Markov Decision Process whose optimal solution is
computationally intractable.

• We design a winning bid allocation algorithm for uni-
form, and diverse workers, respectively. The algorithm
runs in polynomial time to achieve computational effi-
ciency. We then present our payment scheme to guarantee
truthfulness, individual rationality, and budget feasibility.

The rest of the paper is organized as follows. Section II
presents the system model, the reverse auction framework
and label aggregation to formulate the mathematical problem.
Then, we propose our mechanism in Section III. The theo-
retical analysis of the proposed mechanism is presented in
Section IV. In Section V, we evaluate the performance of our
mechanism. Section VI reviews the related work and Section
VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Reverse Auction Framework

We are interested in predicting true labels of a fixed set of
binary tasks, by requiring a fixed group of crowd workers.
In the crowdsourcing system, the interaction between the
platform and the crowd workers can be modeled as a reverse
auction. Crowd workers sell their wisdom to the platform by
providing their labeling answers. The auction framework is
described as follows.

1) The platform publicizes a set M = {t1, t2, ..., tM} of
binary labeling tasks to a set ofN = {1, 2, ..., N} crowd
workers.

2) Each worker j ∈ N replies with a set Θj of kj bids,
each of which is a task-price pair θkj = (tkj , b

k
j ), where

tkj is a single task fromM, and bkj is the charge worker
j claims for performing tkj .

3) The platform sequentially determines the winning bid
set, ΘW ⊆ Θ =

∪
j∈N Θj , from all submitted bids. It

selects a bid into the current winning bid set, observe the
labeling answer, and update the posterior distributions
before selecting the next one.

4) Each winning bid, θkj ∈ ΘW , is paid an amount of
money p(θkj ) by the platform. The platform infers true
labels according to the posterior distributions of the soft
label.

Meanwhile, each bid θkj has an associated cost c(tkj ) ∈ R+.
The cost of performing the task tkj is private and only known
to worker j. Each worker strategically determines bkj to
maximizing his own utility. We define the utility of a worker
as follows.

Definition 1(Worker’s Utility). The utility of a worker is
defined as the difference between the total payment it receives
and his total cost.

uj =
∑

θk
j ∈ΘW

(p(θkj )− c(tkj )) (1)

B. Aggregating Labels from Perfect Workers

The platform publicizes a setM = {t1, t2, ..., tM} of binary
labeling tasks, and employs a set N = {1, 2, ..., N} of crowd
workers to label them. Each task is associated with a true label
zi ∈ {0, 1}, i = 1, 2, ...,M . We denote a labeling answer from
a crowd worker j to task ti as yij ∈ {0, 1}. The platform view
yij as a random variable Yij before the inquiry.

A soft label ϑi ∈ [0, 1] is used to measure the labeling
difficulty of task ti. It is defined as the probability that the
task is labeled as 1 by a perfectly reliable worker, i.e.

Pr(Yij = y|ϑi) = (ϑi)
y(1− ϑi)1−y (2)

which is Bernoulli distribution of parameter ϑi. Since the soft
labels are defined on the interval [0, 1], we set a priori distri-
bution on ϑi ∼ Beta(a0i , b

0
i ) as done in [12]. The probability

density function (PDF) of the Beta distribution with parameter
(a, b) is Beta(x; a, b) = 1

B(a,b)x
a−1(1 − x)b−1, x ∈ [0, 1],

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the Beta function, and Γ(u) =∫∞

0
tu−1e−tdt. Observing a labeling answer Yij = y, we can

calculate the posterior distribution by Bayes’ rule:

p(ϑi|Yij = y) ∝ Pr(Yij = y|ϑi) · p(ϑi) (3)

Due to fact that Beta distribution is the conjugate prior of
Bernoulli distribution, the posterior will become Beta(a0i +
1, b0i ) if Yij = 1, and Beta(a0i , b

0
i +1) if Yij = 0. Thus, if task

ti receives r0i labels of 0, and r1i labels of 1, the posterior will
become

p(ϑi|yi) = Beta(a0i + r0i , b
0
i + r1i ) (4)



When we have no prior knowledge about the task, we can
simply set a0i = b0i = 1, so that the prior is a uniform
distribution. The true label zi is inferred in accordance with
soft label ϑi, which indicates that E[ϑi] ≥ 0.5 implies zi = 1.

C. Aggregating Labels from Diverse Workers

In practice, crowd workers are diverse in the quality. An-
other parameter ϱj ∈ [0, 1] is introduced to capture the quality
of worker j. We model the distribution of Yij by adopting the
one-coin model

Pr(Yij = 1|ϑi, ϱj) = ϑiϱj + (1− ϑi)(1− ϱj)
Pr(Yij = 0|ϑi, ϱj) = ϑi(1− ϱj) + (1− ϑi)ϱj

(5)

As ϱj increases, the quality of worker j also increases in the
sense that the distribution of Yij gets closer to the underlying
distribution of ϑi. When ϱj = 1, worker j becomes a perfectly
reliable worker.

Similarly, the quality ϱj is drawn from a known Beta prior
distribution Beta(c0i , d

0
i ) [12]. Assuming that θi and ϱj are

independent, the prior joint distribution of is the product of two
Beta distributions. Given a labeling answer from the crowd,
the posterior distribution can be calculated by Bayes’ rule:

p(ϑi, ϱj |Yij = y) ∝ Pr(Yij = y|ϑi, ϱj)p(ϑi, ϱj) (6)

In the posterior distribution, ϑi and ϱj are highly correlated
with a joint distribution and no longer follow the form of
the product of two Beta distributions. We approximate the
posterior distribution as follows:

p(ϑi, ϱj |Yij = y) ≈ p̃(ϑi|Yij = y)p̃(ϱj |Yij = y) (7)

where p̃(ϑi|Yij = y) and p̃(ϱj |Yij = y) are all Beta
distributions with modified parameters. By the approximation
method in [12], the posterior distributions of ϑi and ϱj are
still two independent Beta distributions. Thus we can adopt the
sequential allocation method. The detail of the approximation
is revealed in the next section.

D. Problem Formulation

Suppose by the end of task allocation, each task ti receives
labeling answers which can be represented as a vector yi

from the crowd and the posterior distributions of ϑi becomes
p(ϑi|yi). Intuitively, if the posterior distribution is very
different from the prior, our knowledge of the soft label is
largely improved. We use the Kullback-Leibler divergence to
measure the difference of two probability distributions and
define the platform utility as follows.

Definition 2(PlatForm Utility). Platform utility is defined as
the Kullback-Leibler divergence between the initial distribu-
tion and the final distribution of the soft labels.

up(ΘW) =
N∑
i=1

KL(p(ϑi)||p(ϑi|yi)) (8)

Under a strict budget constraint B, the platform aims to
determine a winning bid set that maximizes its utility in
expectation, i.e.

Maximize E[up(ΘW)] s.t.
∑

θ∈ΘW

p(θ) ≤ B (9)

If the platform pays exactly the price workers claim,
p(θkj ) = bkj , to every winning bid, the maximization problem
can be formulated as a Markov Decision Process (MDP),
which is described by a tuple {Br,Θr,Sr, Pr(Yij |Sr)}. Here,
at current allocation round r, Br is the remaining budget. The
action space Θr is all the remaining bids whose cost doesn’t
exceed the remaining budget. The state space Sr is all possible
posterior parameters of soft labels, and quality parameters if
workers are diverse. The transition probability Pr(Yij |Sr) has
been described in our system model.

At each allocation round r, the platform can choose a θr

from Θr as a winning bid and cover its cost with remaining
budget. If θr is submitted by worker j on task ti, the expected
reward of θr is

R(θr|Sr) = EYij |Sr [ur+1
p − urp] (10)

where urp is the platform utility at round r. With the MDP in
place, we can apply backward induction [14] to compute the
optimal winning bid allocation scheme. However, this solution
has two problems: 1) Since the cardinality of the state space
|Sr| grows exponentially with the number of submitted bids,
the optimal solution via backward induction is intractable.
2) Due to selfishness, workers strategically determine their
claimed price to maximize his own utility, hindering the
platform from hiring wisdom with lower payments.

Thus, our mechanism should be computationally efficient
and truthful.

Definition 3(Computational Efficiency). A mechanism is
computationally efficient if both the winning bid allocation
algorithm and the payment determination algorithm terminate
in polynomial time.

Definition 4(Truthfulness). Let θ̃kj = (tkj , c(t
k
j )) denote the

truthful bid and θkj = (tkj , b
k
j ) denote the untruthful bid, where

bkj ̸= c(tkj ). The utility of the truthful bid and the untruthful
bid is u(θ̃kj ) = p(θ̃kj ) − c(tkj ) and u(θkj ) = p(θkj ) − c(tkj ),
respectively. The mechanism is truthful if

u(θ̃kj ) ≥ u(θkj ) (11)

In order to maximize his utility, a worker will disclose the
cost truthfully. Besides, the mechanism should also have the
following desired properties.

Definition 5(Individual Rationality). The utility of a winning
bid is nonnegative.

p(θkj ) ≥ c(tkj ) (12)



Definition 6(Budget Feasibility). The total payment to win-
ning bids is less than the budget.∑

θ∈ΘW

p(θ) ≤ B (13)

Remarks: The importance of above two properties is obvi-
ous. To stimulate crowd workers to participate in task labeling,
their costs must be covered by the payments. Budget feasibility
guarantee that the mechanism can be implemented in practice
and satisfy the basic requirement.

III. ALLOCATION AND PAYMENT SCHEME

A. Allocation Scheme for Perfect Workers

We present our winning bid allocation UN-GREEDY for
perfect workers in this subsection. The allocation scheme is
adaptive, i.e. the platform selects a winning bid, collects the
labeling answer Yij = y, and update the posterior distribution
of ϑi before choosing the next one.

Suppose in the current allocation round r, the distribution
of ϑi is pr(ϑi) = Beta(ari , b

r
i ). By choosing a bid θkj = (tkj =

ti, b
k
j ) and collecting answers Yij = y, the distribution of ϑi is

updated as pr+1(ϑi) = Beta(ar+1
i , br+1

i ). The marginal value
of θkj at round r is defined as the K-L divergence between
pr(ϑi) and pr+1(ϑi) in expectation.

v(θkj ; r) = EYij [KL(pr(ϑi)||pr+1(ϑi))] (14)

Once θkj is selected into ΘW , v(θkj ) is used instead of v(θkj ; r)
to simplify notations. The total value of ΘW is simply the sum
of all marginal contributions, i.e.

V (ΘW) =
∑

θk
j ∈ΘW

v(θkj ) (15)

Instead of measuring expected increment in platform utility,
the marginal value is the myopic K-L difference between two
successive allocation rounds. With this definition in place,
the set function V (ΘW) falls in the family of monotone
submodular functions.

Definition 7(Monotone Submodular Function). Let Ω be a
finite set. For any X ⊆ Y ⊆ Ω and x ∈ Ω/Y , a function:
f : 2Ω 7→ R is submodular if and only if

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ),

and it is monotonic if and only if f(X) ≤ f(Y ).

Theorem 1. The value function of the winning bid set is
monotone submodular.

Proof: The value function is monotonic since the K-
L divergence is always positive. We only need to show the
marginal value v(θkj ; r) is monotonic decreasing with r to
prove the submodularity. The marginal value is a expectation
taken over the answer Yij , which follows Bernoulli distribution
that can be calculated as follows.

Pr(Yij = 1) = Eϑi(Yij = 1|ϑi) = E(ϑi) =
ari

ari + bri
(16)

Pr(Yij = 0) = 1− Pr(Yij = 1) =
bri

ari + bri
(17)

The remainder of the proof is left over in the Appendix.

Algorithm 1: UN-GREEDY
Allocation Scheme for Uniform Workers

Input: set M of binary labeling tasks; set Θ of all
submitted bids; budget B; prior parameters {(a0i , b0i )}Mi=1;
Output: set ΘW ⊆ Θ of winning bids;
The values V (ΘW) of all winning bids;
posterior parameters {(ari , bri )}Mi=1;
Initialize: r ← 0; ΘW ← ∅;
while Θ ̸= ∅ do

θ∗ = {tj∗ , bj∗} ← argmaxθk
j ∈Θ

v(θk
j ;r)

bkj
;

if bj∗ ≤ B
β ·

v(θ∗;r)
V (ΘW∪{θ∗}) then

ΘW ← ΘW ∪ {θ∗};
Observe the labeling answer
Yi∗j∗ = yi∗j∗ ∈ {0, 1} from worker j∗ on ti∗ ;
if yi∗j∗ = 1 then

ar+1
i∗ = ari∗ ;br+1

i∗ = bri∗ + 1;
else

ar+1
i∗ = ari∗ + 1;br+1

i∗ = bri∗ ;
ar+1
i = ari ;br+1

i = bri for all i ̸= i∗.
r ← r + 1;

Θ← Θ \ {θ∗}
Return:ΘW ;V (ΘW); {(ari , bri )}Mi=1;

With this Lemma in place, we adapt the greedy allocation
policy in [15] to present our winning bid selection method in
Algorithm 1. In each allocation round r, the algorithm greedily
selects the bid θ∗ that has the largest value per unit cost, i.e.

θ∗ = {tj∗ , bj∗} ← argmax
θk
j ∈Θ

v(θkj ; r)

bkj

Then we check if the candidate θ∗ satisfies the proportional
share rule on a reduced budget B/β, β ≥ 1 to ensure budget
feasibility, i.e.

bj∗ ≤
B

β
· v(θ∗; r)

V (ΘW ∪ {θ∗})
If it holds, θ∗ wins and the platform acquires the labeling
answer to update posterior distributions. If the the candidate θ∗

doesn’t satisfy the proportional share rule, we simply discard
it and the allocation goes into the next round.

The choice of β≥1 will be discussed as part of the proof of
budget feasibility.

B. Allocation Scheme for Diverse Workers

When taking the quality of crowd workers into consid-
eration, the allocation scheme is almost the same except
that the distribution parameters of ϑi, ϱj are updated by the
approximation method. With the prior distributions of ϑi, ϱj
being Beta(ai, bi),Beta(cj , dj), respectively, the joint posterior
distribution conditioned on the observed label Yij = y is



approximated as the product of two independent Beta distri-
butions with modified parameters [12],

p̃(ϑi|Yij = y) = Beta(ai(y), bi(y))
p̃(ϱj |Yij = y) = Beta(cj(y), dj(y))

(18)

The values of ai(y), bi(y), and cj(y), dj(y) are calculated by
moment matching, by setting the first and second moments
of ϑi, ϱj equal in the true posterior p(ϑi, ϱj |Yij = y) and its
approximation p̃(ϑi|Yij = y)p̃(ϱj |Yij = y). The details of
calculation is in the appendix.

We present the winning bid allocation scheme for hetero-
geneous workers in Algorithm 2.

Algorithm 2: DI-Greedy
Allocation Scheme for Diverse Workers
Input: M ; N ; Θ; budget B; prior parameters
{(a0i , b0i )}Mi=1, {(c0j , d0j )}Nj=1;
Output: ΘW ; V (ΘW); posterior parameters
{(ari , bri )}Mi=1, {(crj , drj)}Nj=1;
Initialize: r ← 0; ΘW ← ∅;
while Θ ̸= ∅ do

θ∗ = {tj∗ , bj∗} ← argmaxθk
j ∈Θ

v(θk
j ;r)

bkj
;

if bj∗ ≤ B
β ·

v(θ∗;r)
V (ΘW∪{θ∗}) then

ΘW ← ΘW ∪ {θ∗};
Observe the labeling answer Yi∗j∗ = yi∗j∗ ;
ar+1
i∗ ← ari∗(yi∗j∗), b

r+1
i∗ ← bri∗(yi∗j∗)

ar+1
i = ari ;br+1

i = bri for all i ̸= i∗.
r ← r + 1;

Θ← Θ \ {θ∗}
Return:ΘW ;V (ΘW); {(ari , bri )}Mi=1;{(crj , drj)}Nj=1;

C. Payment Scheme

The payment scheme should guarantee truthfulness such
that each worker reveals his true cost in the bid to maximize his
utility, i.e. bkj = c(tkj ). Each winning bid is paid its threshold
payment, which is equal to the highest price that still makes the
bid win. Therefore the payment scheme for perfect and diverse
workers can be unified. We adapt the payment scheme in [13]
and the intuition behind can be described as follows. Let us
number the winning bids as ΘW = {θ1, θ2, ..., θi, ..., θk} in
the order of their selection when running the algorithm on the
original bid set Θ. We now consider the payment to the i-th
allocated bid, p(θi). Running the allocation algorithm on the
alternate set Θ′ = Θ \ {θi}, we get an alternate allocation set
ΘW′ = {θ′1, θ′2, ..., θ′j , ..., θ′k′}, in the order of their selection.
To avoid confusion, we use b(θ′j) to denote the price that
θ′j ∈ ΘW′ declares. Now θi from ΘW wants to make a bid
bi(j) to replace θ′j in ΘW′ . This bid should be low enough to
make θj’s value per cost larger than that of θ′j , i.e.

bi(j) ≤ ηi(j) =
b(θ′j) · Vi(j)
V (θ′j)

,

where vi(j) is the marginal value of θj if it has to replace θ′j
in ΘW′ . Moreover, bi(j) should be low enough to follow the
proportional share rule, i.e.

bi(j) ≤ ρi(j) =
B

β
·

vi(j)

V (Θj−1
W′ ∪ θi)

,

where Θj−1
W′ denotes the first j − 1 elements in ΘW′ .

Hence, the maximum bid that θj can declare to replace θ′j
is bi(j) = min(ηi(j), ρi(j)). The final payment to θi takes the
maximum value over the possible k′ + 1 positions in ΘW′ ,
p(θi) = maxj∈[k′+1]bi(j).

In the next section, we will show that this is exactly the
threshold payment of θi in part of the proof of truthfulness.

IV. MECHANISM ANALYSIS

A. Truthfulness

According to the well-known statement by Myerson [16],
a mechanism is truthful if and only if 1) the winning bid
allocation is monotonic, 2) each winning bid is paid the
threshold payment. We will show our mechanism satisfies
these two conditions to finish the proof of truthfulness.

Lemma 1. If a bid θkj = (tkj , b
k
j ) wins, then the alternate bid

θ̃kj = (tkj , b̃
k
j ) also wins, b̃kj ≤ bkj .

Proof: Let’s consider the following two cases after θkj
lowers its price:

Case 1: By lowering bkj to b̃kj , θ̃kj is chosen as the candidate
in the same allocation round. Thus, we have v(θkj ) = v(θ̃kj ),
and V (ΘW∪{θ̃kj }) = V (ΘW∪{θkj }). In this case, θ̃kj satisfies
proportional share rule.

Case 2: θ̃kj is chosen as the candidate before θkj is chosen.
In this case, θ̃kj satisfies the proportional share rule due to the
monotone submodularity of the value function.

b̃kj < bkj ≤
B

β
·

v(θkj )

V (ΘW ∪ {θkj })
≤ B

β
·

v(θ̃kj )

V (Θ̃W ∪ {θ̃kj })
(19)

where Θ̃W denotes the winning bid set right before θ̃kj is
chosen as the candidate.

Notice θ̃kj cannot be chosen after θkj since our determination
rule is greedy.

Lemma 2. Each winning bid θi = (ti, bi) ∈ ΘW is paid its
threshold payment, i.e. p(θi) = inf{bi : θi /∈ ΘW}

Proof: The payment to each winning bid in ΘW is given
as p(θj) = maxj∈[k′+1]bi(j), where bi(j) = min(ηi(j), ρi(j)).

Assume by replaces m-th winning bid in ΘW′ , θi can
declare the maximum bid, i.e p(θj) = bi(m). We then adapt the
proof in [15] to show that θi cannot win if his bid bi > bi(m).

Let πi(m) = ηi(m) ≤ ρi(m). If πi(m) = maxj∈[k′+1]πi(j),
Submitting a price higher than πi(m) places θi after the
unallocated bid θ′k′+1 in ΘW′ . Thus, θi cannot win. If πi(m) <
maxj∈[k′+1]πi(j), consider some j such that πi(m) < πi(j). It is
shown in [15] that submitting a price larger than πi(m) cannot



win since it would violate either the proportional share rule or
put θi after θ′j .

Theorem 2. The winning bid allocation is truthful.
Proof: According to the well-known statement by Myer-

son [16], this theorem holds from the previous two Lemmas.

B. Individual Rationality

Theorem 3. Let θi = (ti, bi). The utility of a winning bid is
nonnegative, i.e. p(θi) ≥ c(ti), ∀θi ∈ ΘW .

Proof: Since p(θi) = maxj∈[k′+1]bi(j), we only need to
show that bi(j) ≥ bi for some j ∈ [k′ +1], then the individual
rationality holds due to the truthfulness, bi = c(ti). We adapt
the proof in the extended version of [15] to show the individual
rationality. We observe that in the original winning bid set ΘW
and the winning bid set ΘW′ without θi: 1) The first i − 1
winning bids in the two sets are identical, Θi−1

W = Θi−1
W′ . 2)

θi from ΘW can replace a winning bid from ΘW′ in the same
position, by submitting bi(i) = min(ηi(i), ρi(i)).

According to observation 1) we have vi(i) = v(θi). Then

ηi(i) =
b(θ′j) · vi(i)
v(θ′j)

= v(θi) ·
b(θ′j)

v(θ′j)
≥ v(θi) ·

bi
v(θi)

= bi

(20)

and

ρi(i) =
B

β
·

vi(i)

V (Θi−1
W′ ∪ θi)

=
B

β
· vi

V (Θi−1
W ∪ θi)

≥ bi (21)

Thus, we have bi ≤ min(ηi(i), ρi(i)) ≤ p(θi).

C. Budget Feasibility

The allocation scheme is based on the proportional share
rule that runs on a fraction of the total budget B/β, where
β≥1 is the budget fraction ratio. Intuitively, a larger β better
guarantees the budget constraint, while a smaller β better
utilizes the budget. A fraction ratio of 2 is achieved by Singla
et al. in [15].

Assume the winning bid selection runs with full budget B
first, i.e. β = 1, with ΘW = {θ1, θ2, ..., θi, ..., θk} being the
winning bids. We will upper bound the payment p(θi) ∈ ΘW ,
by bounding the maximum raise θi can make in its bid bi
and still wins. We formalize it in the next lemma.

Lemma 3. When full budget is used in the winning bid
selection algorithm, the maximum bid b′i that a winning bid
can make and still wins is upper bounded by 2 · v(θi)

V (ΘW) ·B.
Proof: Suppose a winning bid θi ∈ ΘW raises its bid from

b′i(> bi), and still wins. Let ΘW′ = {θ′1, ..., θ′j(= θi), ..., θ
′
k′}

be the alternate winning set, where θi with raised price gets
selected at the j-th position.

Since the bid is raised, θi in ΘW′ gets selected after in
ΘW(j > i), or at least at the same position (j = i). Let
Θi

W , Θj
W′ denote the first i, j winning bids in ΘW , ΘW′ ,

respectively. As in the extended version of [15], we now
investigate ΘR = ΘW \Θj

W′ in the following two cases.
Case 1: ΘR = ∅.
This also implies that ΘW ⊂ Θj

W′ , and V (ΘW) < V (Θj
W′)

according to the non-negativity of value function. Thus we
have

b′i ≤ B ·
v(θ′j)

V (Θj
W′)
≤ B ·

v(θ′j)

V (ΘW)
≤ B · v(θi)

V (ΘW)
(22)

In the last inequality, v(θ′j) ≤ v(θi) holds due to the decreas-
ing marginal value property. In this case, b′i is strictly upper
bounded by the proportional value of θi.

Case 2: ΘR ̸= ∅.
Assume b′i = α ·B V (θi)

V (ΘW) . Still, we have

b′i ≤ B ·
v(θ′j)

V (Θj
W′)
≤ B · v(θi)

V (Θj
W′)

(23)

Hence α ≤ V (ΘW)

V (Θj

W′ )
.

Now, consider replacing θ′j with some θr0 ∈ ΘR after Θj−1
W′ .

It must hold that the marginal value per cost of θr0 is higher
than that of the whole ΘR. To simplify notations, we use
v(θ|Θ) = V (Θ∪θ)−V (Θ)

b(θ) to denote the marginal value of a bid
θ, if it is selected after a set of bids Θ. We have

V (Θj
W′ ∪ΘR)− V (Θj

W′)∑
θr∈ΘR

b(θr)
≤
v(θr0|Θj

W′)

b(θr0)
≤
v(θr0|Θj−1

W′ )

b(θr0)
(24)

The second inequality is due to the submodularity of the value
function. Since θ′j is chosen as the candidate at position j
instead of θr0, we have

v(θr0|Θj−1
W′ )

b(θr0)
≤
v(θ′j |Θ

j−1
W′ )

b′i
≤
v(θi|Θi−1

W )

b′i
=
V (ΘW)

α ·B
(25)

Observing that
∑

θr∈ΘR
b(θr) ≤ B, and V (ΘW) ≤

V (Θj
W′ ∪ΘR), we have

V (ΘW)− V (Θj
W′)

B
≤ V (ΘW)

α ·B
(26)

which leads to V (ΘW)

V (Θj

W′ )
≤ α

α−1 . Combining the constraints on
α together, we have α = 2.

Hence, b′i ≤ 2 · v(θi)
V (ΘW) ·B holds in the above two cases.

With this lemma in place, the proof of the budget feasibility
is straight forward.

Theorem 4. Our mechanism achieves budget feasibility, i.e.∑
θi∈ΘW

p(θi) ≤ B, by choosing the budget fraction ratio
β = 2.

Proof: Running the winning bid allocation algorithm with
B/2, we have∑

θi∈ΘW

b′i ≤
∑

θi∈ΘW

2 · v(θi)

V (ΘW)
· B
2

= B (27)



Since p(θi) is the threshold payment, i.e. p(θi) = sup{b′i :
θi ∈ ΘW′}, by taking the supremum we have

sup
∑

θi∈ΘW

b′i =
∑

θi∈ΘW

p(θi) ≤ B (28)

D. Computation Efficiency

Theorem 5. Both winning bid allocation scheme and payment
scheme are computationally efficient.

Proof: In winning bid allocation algorithm, the sorting
before selecting the candidate bid θ∗ is O(|Θ| log |Θ|). The
proportional share rule checking and posterior parameter up-
dating is O(1). Since the outer while loop runs at most |Θ|
times, the computation complexity for allocation algorithm is
O(|Θ|2 log |Θ|).

The payment scheme first runs |ΘW | times for every win-
ning bid θi on Θ \ {θi}, which is O(|ΘW | · |Θ|2 log |Θ|).
Then it chooses the maximum value bi(m) over all the possible
positions in Θ′

W . Thus the payment scheme is O(|ΘW | ·
(|Θ|2 log |Θ|+ |Θ′

W |)).

V. PERFORMANCE EVALUATION

To effectively evaluate the performance of our mechanism,
we implement our winning bid allocation algorithms UN-
GREEDY and DI-GREEDY against the following benchmarks.

• UN-RANDOM regards all workers as uniform and perfect.
It randomly chooses a bid outside the current winning bid
set as the candidate. The candidate also needs to respect
the proportional share rule before becoming a winning
bid.

• DI-RANDOM is the equivalent to UN-RANDOM in the
sense that it incorporates workers’ quality levels to update
posterior distributions.

• UN-UNTRUTHFUL has access to workers’ real costs and
pays the exact cost to the worker. It chooses the candidate
the same way as UN-GREEDY. The candidate becomes a
winning bid if its cost is less than the remaining budget.

• DI-UNTRUTHFUL is the equivalent to UN-UNTRUTHFUL
in the sense that it incorporates workers’ quality.

The performance metrics includes running time, platform
utility, and budget utilization. To evaluate the computation
efficiency, we compare the running time of UN-GREEDY
and DI-GREEDY against the benchmarks. We then evaluate
platform utility to show that our mechanism outperforms the
naive random allocation scheme. Finally, we compute the total
payment to show that our mechanism utilizes budget efficiently
under strict constraints.

A. Running Time

We set the cost of each bids as uniformly distributed over
[1, 5], and vary the number of submitted bids N from 100
to 600 for different allocation algorithms. The running time
of uniform workers and diverse workers are shown in Fig.
1. We observe that the running time of UN-GREEDY and

DI-GREEDY is much less that UN-UNTRUTHFUL and DI-
UNTRUTHFUL, respectively. UN-RANDOM and DI-RANDOM
outperform the rest since they doesn’t do sorting operation.
The running time of UN-GREEDY and DI-GREEDY increases
lineally with the number of bids N , while the budget B doesn’t
affect running time much.
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Fig. 1. Running time

B. Platform Utility

We first assume the cost is uniformly distributed over
[1, 5] and vary the budget B. The platform utility of uniform
workers under different winning bid allocation algorithms is
plotted in Fig. 2(a). Fig. 2(b) plots the platform utility in the
case of diverse workers. We observe that UN-UNTRUTHFUL
outperforms UN-GREEDY slightly since it does not respect
proportional share rule and pays exactly the cost to winning
bids. When the number of bids N = 200, UN-GREEDY
always outperforms UN-RANDOM for all budget constraints.
As the number of bids N reduces to 50, platform utility also
decreases, which reveals that a large amount of bids brings
more utility.

Next, we generate the costs of bids according to three
distributions: uniform distribution (UNM), normal distribution
(NORM) and exponential distribution (EXP) with equal mean
value 5.5. The variance of the normal distribution is set as
σ2 = 1. The platform utility is plotted in Fig. 3.
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Fig. 2. Platform utility

C. Budget Utilization

We compute the total payment corresponding to UN-
GREEDY, DI-GREEDY, UN-RANDOM, and DI-RANDOM as
budget B ranging from 50 to 400. The number of bids is set
to 100 and the cost follows uniform distribution over [1, 5].
We plot the budget utilization ratio P/B in Fig. 4. The results



show that our allocation algorithms utilize budget much more
efficient than the random allocation scheme.
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VI. RELATED WORK

A. Crowd Label Collection and Aggregation

Much of the previous work focus on information aggre-
gation in a crowdsourcing scenario where we have to infer
the true label with a bunch of noisy labels. Karger et al.
[8], [10] allocate labeling tasks according to a bipartite graph
and infer the true label with an iterative learning algorithm,
or low-rank matrix approximation. Raykar et al. [17], [11]
propose a probabilistic framework with multiple annotators
providing labels but no absolute gold standard. Xiao et al.
[18] use the BCH code for multi-class labeling in the setting
of mobile crowdsensing. Sheng et al. [19] consider inference
methods for crowdsourcing based scoring systems. However,
these papers assume that we can repeatedly access any worker
for any tasks and fail to provide appropriate incentives.

B. Incentive Mechanisms for Crowd Sensing

Most existing incentive mechanisms focus on the system
of mobile sensing applications. Yang et al. [9] design two
incentive mechanisms for a user centric model and a platform
centric model, respectively. He et al. [20], Feng et al. [21] and
James et al. [22] study the task allocation problem for location
dependent tasks. Iosifidis et al. [23] design a bargaining
based scheme for the crowdsourced Internet access. Lee et al.
[24] design a reverse auction based mechanism with dynamic
price. Zhang et al. [25] design a non-monetary incentive
mechanism based on participants’ reputation. Zhao et al. [26]
design an online mechanism for mobile crowdsourced sensing.
However, there are few works that adapt the desired properties
such as truthfulness and budget feasibility into the setting of
crowdsourced label collection.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a framework of reverse
auction based incentive mechanism for label collection in
crowdsourcing systems. We take into account the difficulty
of labeling tasks and focus on maximizing the utility of the
crowdsourcer. We have designed two winning bid allocation
algorithm under different assumptions: UN-GREEDY can be
applied to the case where the majority of crowd workers
are of high reliability, and DI-GREEDY can be applied to a
more general case where the workers are highly diverse. The

proposed mechanism is easy to implement in practice, and has
strong theoretical guarantees such as truthfulness, individual
rationality, budget feasibility and computation efficiency.

We can carry the future work along the following directions.
First, the tasks can be extended to multi-class labeling, in
which a task may get more than two labels. Second, since
the workers may arrive and leave at any time online, we can
extend our mechanism to this highly dynamic scenario.
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APPENDIX A
PROOF OF SUBMODULARITY

The K-L divergence of two Beta distributions is

KL(Beta(a, b)||Beta(a′, b′)) = ln(
B(a′, b′)
B(a, b)

)

+(a− a′)ψ(a) + (b− b′)ψ(b) + (a′ − a+ b′ − b)ψ(a+ b)
(29)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function. In the setting

of uniform workers, the marginal value of a bid θkj at round
r can be calculated as

v(θkj ; r) = p0 · KL(Beta(ari , b
r
i )||Beta(ari , b

r
i + 1))

+p1 · KL(Beta(ari , b
r
i )||Beta(ari + 1, bri ))

(30)

where ari , b
r
i are posterior parameters for task ti in round r.

Since B(a+ 1, b) = a
a+bB(a, b), the above formula is defined

as v(ari , b
r
i ) and can be simplified into

v(ari , b
r
i ) = ψ(ari + bri )− ln(ari + bri )

+
ari

ari + bri
[ln(ari )− ψ(ari )] +

bri
ari + bri

[ln(bri )− ψ(bri )]

(31)

To prove v(θkj ; r) is monotonic decreasing with r, we shall
show that v(a′, b′) ≤ v(a, b), for a′ ≥ a, b′ ≥ b. Since ari and
bri are symmetric, we only need to show that ∂v(a,b)

∂a ≤ 0.

∂v(a, b)

∂a
= ψ(1)(a+ b)− a

a+ b
ψ(1)(a)

+
b

(a+ b)2
[ln(a)− ln(b) + ψ(b)− ψ(a)]

(32)

where ψ(m)(z) = (−1)m+1 m!
∑∞

k=0
1

(z+k)m+1 , for m > 0
and any complex z not equal to a negative integer [27]. We

have

d

dx
(ψ(1)(x)− 1

x− 0.49
) =

∞∑
k=0

−2
(x+ k)3

+
1

(x− 0.49)2
≤ 0,

(33)

Since ψ(1)(x) ≥ ψ(x+ 1)− ψ(x) = 1
x , we get

lim
x→∞

ψ(1)(x)− 1

x− 0.49
= 0 (34)

Thus,

ψ(1)(x) ≥ 1

x− 0.49
(35)

We get another inequality from

ψ(1)(x) ≤ ψ(x+ 0.5)− ψ(x− 0.5) =
1

x− 0.5
(36)

Submitting 35, 36 into 32 ends the proof.

APPENDIX B
POSTERIOR CALCULATION

Assuming, at the current state, ϑi and ϱj are independent,
and ϑi ∼ Beta(ai, bi), ϱj ∼ Beta(cj , dj), the posterior
distribution conditioned on Yij can be calculated using Bayes’
rule:

p(ϑi, ϱj |Yij = y) =
Pr(Yij = y|ϑi, ϱj)p(ϑi, ϱj)

Pr(Yij = y)
(37)

for y = 1, 0, where

p(ϑi, ϱj) = p(ϑi)p(ϱj) = Beta(ai, bi) · Beta(cj , dj), (38)

Pr(Yij = y) = Eϑi,ϱj (Pr(Yij = y|ϑi, ϱj)). (39)

We approximate the posterior distribution by a product of
two Beta distribution with modified parameters as done by
Chen et al. in [12],

p(ϑi, ϱj |Yij = y) ≈ p̃(ϑi|Yij = y)p̃(ϱj |Yij = y)

= Beta(ai(y), bi(y))Beta(cj(y), dj(y))
(40)

The modified parameters are calculated by setting equal( .=) the
first and second moments of p̃(ϑi|Yij = y), p̃(ϱj |Yij = y) to
the real marginal distributions p(ϑi|Yij = y), p(ϱj |Yij = y),
respectively.

We list the results in [12] as follows.

E1(ϑi) =
ai((cj(ai + 1) + bidj))

(ai + bi + 1)(aicj + bidj)

E0(ϑi) =
ai((dj(ai + 1) + bicj))

(ai + bi + 1)(bicj + aidj)

E1(ϑ
2
i ) =

ai(ai + 1)((ai + 2)cj + bidj)

(ai + bi + 1)(ai + bi + 2)(aicj + bidj)

E0(ϑ
2
i ) =

ai(ai + 1)((ai + 2)dj + bicj)

(ai + bi + 1)(ai + bi + 2)(bicj + aidj)

(41)

Similarly, we can calculate cj(y), dj(y) the same way.


