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Abstract—Device-to-device (D2D) communication underlaying
cellular networks is a promising technology to improve network
resource utilization. In D2D-enabled cellular networks, the inter-
ference among spectrum-sharing links is more severer than that
in traditional cellular networks, which motivates the adoption
of interference cancellation techniques such as successive inter-
ference cancellation (SIC) at the receivers. However, to date,
how SIC can affect the performance of D2D-enabled cellular
networks is still unknown. In this paper, we present an analytical
framework for studying the performance of SIC in large-scale
D2D-enabled cellular networks using the tools from stochastic
geometry. To facilitate the interference analysis, we propose the
approach of stochastic equivalence of the interference, which con-
verts the two-tier interference (interference from both the cellular
tier and D2D tier) to an equivalent single-tier interference. Based
on the proposed stochastic equivalence models, we derive the
general expressions for the successful transmission probabilities
of cellular uplinks and D2D links with infinite and finite SIC
capabilities respectively. We demonstrate how SIC affects the
performance of large-scale D2D-enabled cellular networks by
both analytical and numerical results.

I. INTRODUCTION

Recently, there has been a rapid increase in the demand of
local area services and proximity services (ProSe) among the
highly-capable user equipments (UEs) in cellular networks. In
this context, a new technology called device-to-device (D2D)
communication, which enables direct communication between
UEs that are in proximity, has been proposed and has strongly
appealed to both academia [1], [2] and industry [3], [4]. The
integration of D2D communication to cellular networks holds
the promise of many types of advantages [2]: allowing for
high-rate low-delay low-power transmission for proximity ser-
vices, increasing frequency reuse factor and network capacity,
facilitating new types of peer-to-peer services, etc.

However, the introduction of D2D communication also
brings a number of technical challenges, such as device
discovery, mode selection and interference management. Inter-
ference management is a major issue in D2D-enabled cellular
networks, since D2D links share the same spectrum resource
with regular cellular links and the interference among the
spectrum-sharing links severely hampers the performance of
the network. To guarantee reliable communications in D2D-
enabled cellular networks, extensive research has been under-
taken on the topic of interference management. Most proposed
schemes can be classified into three categories: (1) Interfer-
ence avoidance: orthogonal time-frequency resource allocation

schemes are adopted to avoid interference between D2D and
cellular links [5]; (2) Interference coordination: intelligent
power control and link scheduling schemes are employed
to mitigate the interference between D2D and cellular links
[6], [7]; and (3) Interference cancellation: advanced signal
processing techniques are applied at cellular and/or D2D links
to cancel the interfering signals [8], [9]. In this paper, we
focus on the topic of interference cancellation in D2D-enabled
cellular networks.

Interference cancellation (IC) is regarded as a promising
technique to reduce interference and improve network capac-
ity. Using interference cancellation techniques, the interfering
signals can be regenerated and subsequently canceled from
the desired signal [10]. Best known interference cancella-
tion techniques include successive interference cancellation
(SIC), parallel interference cancellation (PIC) and iterative
interference cancellation (IIC) [11]. The key advantage of
SIC compared to other interference cancellation techniques
is that the SIC receiver is architecturally similar to traditional
non-SIC receivers in terms of hardware complexity and cost
[11], as it uses the same decoder to decode the composite
signal at different stages and neither complicated decoders nor
multiple antennas are required. Furthermore, it is known that
SIC can achieve the Shannon capacity region boundaries for
both the broadcast and multiple access networks. As such,
SIC has been widely studied and recently implemented in
commercial wireless systems such as IEEE 802.15.4. However,
to date, most analytical results on SIC are for ad hoc and
cellular networks. It is still unknown how SIC can improve the
performance of large-scale D2D-enabled cellular networks, in
which the interference among spectrum-sharing links is more
severer than that in traditional ad hoc and cellular networks.
In this paper, we present an analytical framework to evaluate
how SIC affects the performance of large-scale D2D-enabled
cellular networks. The main contributions of this paper are
summarized as follows.

(1) We model a large-scale D2D-enabled cellular network
without SIC capabilities via stochastic geometry, and derive
the general expressions for the successful transmission prob-
abilities of cellular uplinks and D2D links. Furthermore, to
simplify the interference analysis in the network, we propose
the approach of stochastic equivalence of the interference.
By this approach, the two-tier interference (interference from
the cellular tier and D2D tier) can be represented by an



equivalent single-tier interference that maintains the same
stochastic characteristics as the two-tier interference.

(2) Based on the stochastic equivalence models, we derive
the general expressions for the successful transmission prob-
abilities of cellular uplinks and D2D links with infinite and
finite SIC capabilities respectively. We demonstrate the effect
of SIC on the performance of large-scale D2D-enabled cellular
networks by analytical and numerical results.

The rest of this paper is organized as follows. Section II
presents the related work. Section III describes the system
model. Sections IV and V analyze the successful transmis-
sion probabilities in D2D-enabled cellular networks without
and with SIC respectively and present the numerical results.
Section VI concludes the paper. A summary of the notations
used in this paper is given in Table I.

II. RELATED WORK

D2D communication. There have been numerous studies
on interference management for D2D communications. Xu
et al. [5] proposed a combinatorial auction approach to al-
locate orthogonal resources between cellular and D2D users.
Kaufman et al. [6] presented an opportunistic communication
scheme in which the D2D network can communicate as a fully
loaded cellular network. Pei and Liang [7] designed a spectrum
sharing protocol that enables D2D users to communicate
bi-directionally while assisting the two-way communications
between the base station and cellular users. Min et al. [8]
designed an interference cancellation scheme that exploits a
retransmission of the interference from the base station. Ma et
al. [9] proposed two superposition coding-based cooperative
relaying schemes to exploit the transmission opportunities for
D2D users without deteriorating the performance of cellular
users.

Successive interference cancellation. Very recently, there
is a growing interest to exploit SIC at the physical layer to
improve network performances at upper layers. In [12], Gelal
et al. proposed a topology control framework for exploiting
the benefits of multi-packet reception using SIC in multi-
user MIMO networks. In [13], Jiang et al. combines SIC and
interference avoidance to improve the throughput of a multi-
hop network. In [14], Xu et al. developed a decentralized
power allocation scheme to achieve the maximum throughput
for random access systems with SIC receivers. In [15], Lv et
al. proposed two layered models to characterize the impact
of SIC, and presented corresponding link scheduling schemes
under these models. In [16], Mollanoori and Ghaderi studied
the uplink scheduling problems for networks supporting SIC,
and derived the optimal decoding order of the concurrent
transmissions.

Stochastic geometry for modeling wireless networks. As a
mathematical tool to study random spatial patterns, stochastic
geometry can be used to model and analyze the interference,
connectivity and coverage in large-scale wireless networks
[17]. Most of the literature in the area of modeling networks
via stochastic geometry focus on ad hoc [18], [19] and
cellular [20], [21] networks. Recently, stochastic geometry has

Table I: Notations used in the paper

Notation Description
Φc Poisson point process of cellular users (density λc)
Φd Poisson point process of D2D transmitters (density λd)

Φ
eq
c−intf

Equivalent Poisson point process of
the interferers for cellular links (density λeq

c−intf )

Φ
eq
d−intf

Equivalent Poisson point process of
the interference for D2D links (density λeq

d−intf )
Pc Transmission power of cellular users
Pd Transmission power of D2D users
α Path loss exponent

(
δ = 2

α

)
T SIR threshold for successful transmission
pc Successful transmission prob. of cellular links without SIC
pd Successful transmission prob. of D2D links without SIC

pSIC
c , pN−SIC

c
Successful transmission prob. of cellular links

with infinite and (finite) N -level SIC

pSIC
d , pM−SIC

d

Successful transmission prob. of D2D links
with infinite and (finite) M -level SIC

also been employed to model D2D-enabled cellular networks
[22]–[24]. In [22]–[24], the cellular and D2D networks were
modeled by independent PPPs, and their SINR distributions
were derived without considering interference cancellation
techniques. The stochastic geometry-based analysis of SIC has
been presented in literature [25]–[29]. In [25], [26], simplified
SIC models were given by assuming that the interference
greater than a threshold can be completely canceled. Exact SIC
models were investigated for ad hoc network in [27], [28] and
for cellular networks in [29]. Different from [27]–[29], in this
paper, we focus on the analysis of the effect of SIC for D2D-
enabled cellular networks. Since the stochastic characteristics
of heterogeneous networks (comprising ad hoc users and
cellular users) are quite different from those of homogeneous
networks (comprising only ad hoc users or cellular users), the
analysis of SIC in this paper is more challenging than that in
[27]–[29].

III. SYSTEM MODEL

In this section, we elaborate on the network model and
describe the SIC scheme.

A. Network Model

We consider a spectrum-sharing D2D-enabled cellular net-
work consisting of both cellular users and D2D users over a
large two-dimensional space, and focus on the uplink trans-
mission for cellular users. The cellular users are assumed to be
spatially distributed as a homogeneous Poisson point process
(PPP) Φc with density λc, and an independent collection of
base stations (BSs) is assumed to be located according to
some independent stationary point process Φb. We assume
that each cellular user is associated with its nearest base
station, and each base station has only one active uplink
cellular user scheduled. Under such assumptions, each base
station can be considered to be uniformly distributed in the
Voronoi cell of its associated cellular user, as shown in Fig.1.
It is noted that the orthogonal scheduling policy leads to
coupling between the locations of cellular users and those
of base stations. Nevertheless, it has been shown that the
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Figure 1: Network model.

dependence introduced by coupling has negligible effects on
the performance analysis [21], [29], Therefore, for analytical
tractability, we assume that the point processes of cellular users
and base stations are independent.

The D2D transmitters in the network are assumed to be
distributed according to a homogeneous PPP Φd with density
λd. For a given D2D transmitter, its associated receiver is
assumed to be located at a distance l away with isotropic
direction, where l is Rayleigh distributed:

fl (l) = 2πλdle
−πλdl2 . (1)

This Rayleigh distribution assumption is of practical interest
and is employed in many works [22]–[24]. Other distributions
of l can be easily incorporated into the framework.

The transmission powers are assumed to be Pc at uplink
cellular users and Pd at D2D transmitters respectively. We
adopt a unified channel model that comprises standard path
loss and Rayleigh fading for both cellular and D2D links:
given transmission power P of the transmitter located at xi, the
received power at the receiver located at xj can be expressed
as Ph ‖xi − xj‖−α, where h is the fading factor following
an exponential distribution with unit mean, i.e. h ∼ exp (1),
and α > 2 is the path loss exponent. In later parts of this
paper we use δ to denote 2

α for brevity of expressions. In
addition, as interference dominates noise in most modern
cellular networks, we consider the network to be interference-
limited.

B. SIC Technique

SIC is a promising interference cancellation technique that
has been widely studied for wireless networks. The basic
concept of SIC is to regenerate the interfering signals and
subsequently cancel them from the received composite signal,
so as to improve the signal-to-interference ratio (SIR) of the
desired signal. In this technique, the SIC receiver first decodes
the strongest interfering signal by treating other signals as
noise. Then it regenerates the analog signal from the decoded
signal, and cancels it from the received composite signal. After
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Figure 2: Schematic diagram of SIC process.

this stage, the remaining signal is free from the interference
of the strongest interfering signal. Then, the SIC receiver
proceeds to decode, regenerate and cancel the second strongest
interfering signaling from the remaining signal and so forth,
until the desired signal can be decoded. The schematic diagram
of SIC process is shown in Fig.2.

In this paper, we assume that the SIC technique is employed
at both cellular receivers (BSs) and D2D receivers. For cellular
receivers, we consider the cases of infinite and finite SIC
capabilities respectively, and study the successful transmission
probabilities of cellular links for each case. However, for D2D
receivers, due to their limited computational capabilities, we
focus only on the case of finite SIC capability.

IV. NETWORK PERFORMANCE WITHOUT SIC

In this section, we consider the scenario that neither the
cellular receivers (BSs) nor the D2D receivers have SIC capa-
bilities, and derive the successful transmission probabilities of
both cellular and D2D links. We also analyze the stochastic
equivalence of interference in the network, which is essential
for the SIC analysis in later sections.

A. Successful Transmission Probability of Cellular Links

Without loss of generality, we conduct the analysis on a
typical cellular link that comprises a typical BS located at
the origin and its associated cellular user located at a random
distance r away. Under the nearest-BS association policy, the
random variable r can be shown to be Rayleigh distributed
and its probability density function (pdf) follows [21]:

fr (r) = 2πλcre
−πλcr2

. (2)

Denote the fading factor of the typical cellular link by g0,
which is i.i.d exponential with g0 ∼ exp (1). Then, the received
SIR of the typical cellular link, i.e., the received SIR at the
typical BS, can be expressed as

SIRc =
Pcg0r

−α

Ic
, (3)



where

Ic =
∑

xi∈Φc\{x0}

Pcgi ‖xi‖−α +
∑
yi∈Φd

Pdhi ‖yi‖−α (4)

is the cumulative interference from all other cellular users
(except the typical cellular user x0) that are located at xi with
fading factor gi and D2D transmitters that are located at yi
with fading factor hi1.

The successful transmission probability of cellular links can
be defined as

pc
4
= P [SIRc > T ] , (5)

where T is the SIR threshold. The expression of pc is given
by the following theorem.

Theorem 1. The successful transmission probability of cellu-
lar links without SIC capability is

pc =
λc

λc (µ+ 1) + λd

(
Pd
Pc

)δ
ν

, (6)

where

µ =
δ

1− δ
T · 2F1 (1, 1− δ; 2− δ;−T ) , (7)

ν = T δΓ (1− δ) Γ (1 + δ) , (8)

and 2F1 (·) ,Γ (·) are respectively the Hypergeometric function
and Gamma function.

Proof: Starting from the definitions of pc, we have

pc
4
= P [SIRc > T ]

= Er,Ic [Pg0
[SIRc > T ]]

= Er,Ic
[
Pg0

[
g0 > P−1

c TrαIc
]]

(a)
= Er,Ic

[
exp

(
−P−1

c TrαIc
)]

(b)
= Er

[
LIc

(
P−1
c Trα

)]
=

ˆ ∞
0

LIc
(
P−1
c Trα

)
· fr (r) dr. (9)

(a) follows from the Rayleigh distribution assumption of
channel fading. In (b), LIc (·) denotes the Laplace trans-
form of Ic. Let Ic = Ic−c + Ic−d, where Ic−c =∑
xi∈Φc\{x0} Pcgi ‖xi‖

−α and Ic−d =
∑
yi∈Φd

Pdhi ‖yi‖−α
denote the interference from cellular links and D2D links
respectively. Then it is straightforward to get

LIc (s) = LIc−c (s) · LIc−d (s) . (10)

The Laplace transform of Ic−c is given by

LIc−c (s) = E

exp

−s ∑
xi∈Φc\{x0}

Pcgi ‖xi‖−α


1To distinguish different links, in this paper we use g ∼ exp (1) , h ∼
exp (1) to represent the fading factors of links related to cellular transmitters
(cellular users) and D2D transmitters respectively. It is noted that there is no
essential distinction between these two symbols.

= EΦc

 ∏
xi∈Φc\{x0}

Eg
[
exp

(
−sPcgi ‖xi‖−α

)]
(c)
= exp

(
−λc
ˆ

Φc∩B(o,r)

(
1− Eg

[
e−sPcgi‖xi‖

−α
])

dxi

)

= exp

(
−λc
ˆ

Φc∩B(o,r)

(
1− 1

1 + sPc ‖xi‖−α

)
dxi

)
(d)
= exp

(
−λc · 2π

ˆ ∞
r

v

1 + s−1P−1
c vα

dv

)
(e)
= exp

(
−λcπ

δ

1− δ
sPcr

2−α
2F1

(
1, 1− δ; 2− δ;−sPc

rα

))
.

(11)

(c) follows from the probability generating functional (PGFL)
of PPP [30]: E

[∏
x∈Φ f (x)

]
= exp

(
−λ
´
R2 (1− f (x)) dx

)
.

(d) follows from the double integral in polar coordi-
nates. (e) follows from the definite integral [31, 3.194.2]:´∞
b

v
1+avα dv = 1

α ·
b2−α

a(1− 2
α ) 2F1

(
1, 1− 2

α ; 2− 2
α ;− 1

abα

)
.

Similarly, we have

LIc−d (s) = E

exp

−s ∑
yi∈Φd

Pdhi ‖yi‖−α


= exp

(
−λd
ˆ
R2

(
1− Eh

[
exp

(
−sPdhi ‖yi‖−α

)])
dyi

)
= exp

(
−λd
ˆ
R2

(
1− 1

1 + sPd ‖yi‖−α

)
dyi

)
= exp

(
−λd · 2π

ˆ ∞
0

u

1 + s−1P−1
d uα

du

)
= exp

(
−λdπ (sPd)

δ
Γ (1− δ) Γ (1 + δ)

)
. (12)

By plugging (11) (12) into (10) and letting s = P−1
c Trα, we

get

LIc
(
P−1
c Trα

)
= exp

(
−π

[
λcµ+ λd

(
Pd
Pc

)δ
ν

]
r2

)
,

(13)
where µ = δ

1−δT · 2F1 (1, 1− δ; 2− δ;−T ) , ν = T δ ·
Γ (1− δ) Γ (1 + δ). Then by plugging (2) (13) into (9), we
complete the proof.

B. Successful Transmission Probability of D2D Links

We conduct the analysis on a typical D2D link that com-
prises a typical D2D transmitter located at some point in
the network and a typical D2D receiver located at a random
distance l away. Shift the coordinates such that the typical
D2D receiver is located at the origin2, and denote the fading
factor of the typical D2D link by h0, h0 ∼ exp (1). Then, the
received SIR of the typical D2D link can be expressed as

SIRd =
Pdh0l

−α

Id
, (14)

2It is noted that the translations do not change the distribution of PPP [32].



where

Id =
∑

yi∈Φd\{y0}

Pdhi ‖yi‖−α +
∑
xi∈Φc

Pcgi ‖xi‖−α (15)

is the cumulative interference from all other D2D transmitters
(except the typical D2D transmitter located at y0) that are
located at yi with fading factor hi and cellular users that are
located at xi with fading factor gi.

The successful transmission probability of D2D links can
be defined as

pd
4
= P [SIRd > T ] , (16)

where T is the SIR threshold. Note that the same SIR threshold
T is assumed for cellular and D2D links. The expression of
pd is given by the following theorem.

Theorem 2. The successful transmission probability of D2D
links without SIC capability is

pd =
λd

λd (ν + 1) + λc

(
Pc
Pd

)δ
ν

, (17)

where ν is given in (8).

Proof: Starting from the definitions of pd and SIRd,

pd
4
= P [SIRd > T ]

= El,Id [Ph0 [SIRd > T ]]

= El
[
LId

(
P−1
d T lα

)]
=

ˆ ∞
0

LId
(
P−1
d T lα

)
· fl (l) dl. (18)

Following approaches similar to those in previous proofs and
Slivnyak’s theorem [30]: P!x = P, we have

LId (s) = EId [exp (−sId)]

= E

exp

−s ∑
yi∈Φd\{y0}

Pdhi ‖yi‖−α


× E

[
exp

(
−s

∑
xi∈Φc

Pcgi ‖xi‖−α
)]

= exp
(
−λdπ (sPd)

δ
Γ (1− δ) Γ (1 + δ)

)
× exp

(
−λcπ (sPc)

δ
Γ (1− δ) Γ (1 + δ)

)
. (19)

Therefore,

LId
(
P−1
d T lα

)
= exp

(
−π

[
λd + λc

(
Pc
Pd

)δ]
νl2

)
, (20)

where ν is given in (8). Then by plugging (1) (20) into (18),
we complete the proof.

Remark 1. Via the expressions of pc and pd shown in Theorem
1 and 2, we can observe that µ, ν represent the effect of the
interference from the cellular links and D2D links respectively,
and (Pd/Pc)

δ
, (Pc/Pd)

δ can be regarded as the conversion
factors of powers.

C. Stochastic Equivalence of Interference

By (4) (15), the cumulative interference at each link is gen-
erated by two-tier interferers, i.e., the cellular-tier and D2D-tier
interferers. The analysis of such two-tier interference is trivial,
as shown in the derivations of Theorem 1 and 2. Therefore, to
simplify the analysis and facilitate the performance evaluation
of SIC in later sections, we propose an approach to equate
the two-tier interference by a single-tier interference that has
the same stochastic characteristics (in terms of successful
transmission probability) as the two-tier interference.

We first study the stochastic equivalence of the interference
for cellular links. By (4), the interferers for the typical cellular
link constitute Φc−intf = (Φc \ {x0})

⋃
Φd. We represent

Φc−intf by an equivalent PPP Φeq
c−intf \ {x0} with density

λeq
c−intf and transmission power Pc. Then, the equivalent

interference at the typical cellular link can be expressed as

Ieq
c =

∑
xi∈Φeq

c−intf\{x0}

Pcgi ‖xi‖−α , (21)

which has the same stochastic characteristics as Ic.

Lemma 1. The density of the equivalent interferers for cellu-
lar links is

λeq
c−intf = λc + λd

(
Pd
Pc

)δ
ν

µ
, (22)

where µ, ν are given in (7) , (8) respectively.

Proof: Considering Ieq
c has the same stochastic charac-

teristics as Ic, we have

LIc
(
P−1
c Trα

)
= LIeq

c

(
P−1
c Trα

)
. (23)

The Laplace transform of Ieq
c is obtained as

LIeq
c

(s) = EIeq
c

[exp (−sIeq
c )]

= E

exp

−s ∑
xi∈Φeq

c−intf\{x0}

Pcgi ‖xi‖−α


= exp

(
−λeq

c−intfπ
δ

1− δ
sPcr

2−α
2F1

(
1, 1− δ; 2− δ;−sPc

rα

))
.

(24)

Therefore,

LIeq
c

(
P−1
c Trα

)
= exp

(
−λeq

c−intfπµr
2
)
, (25)

where µ is given in (7). Then by plugging (13) (25) into (23),
we complete the proof.

It is noted that pc can be obtained as
´∞

0
LIeq

c

(
P−1
c Trα

)
·

fr (r) dr, and by (24), we have

pc =
λc

λeq
c−intfµ+ λc

, (26)

which is consistent with the result of Theorem 1.
We next study the stochastic equivalence of the interference

for D2D links. By (15), the interferers for the typical D2D
link constitute Φd−intf = (Φd \ {y0})

⋃
Φc. We represent



Φd−intf by an equivalent PPP Φeq
d−intf \ {y0} with density

λeq
d−intf and transmission power Pd. Then, the equivalent

interference at the typical D2D link can be expressed as

Ieq
d =

∑
yi∈Φeq

d−intf\{y0}

Pdhi ‖yi‖−α . (27)

Lemma 2. The density of the equivalent interferers for D2D
links is

λeq
d−intf = λd + λc

(
Pc
Pd

)δ
. (28)

Proof: Starting from the Laplace transform of Ieq
d ,

LIeq
d

(s) = EIeq
d

[
exp

(
−sIeq

d

)]
= E

exp

−s ∑
yi∈Φeq

d−intf\{y0}

Pdhi ‖yi‖−α


= exp
(
−λeq

d−intfπ (sPd)
δ

Γ (1− δ) Γ (1 + δ)
)
. (29)

Therefore,

LIeq
d

(
P−1
d T lα

)
= exp

(
−λeq

d−intfπνl
2
)
, (30)

where ν is given in (8). Then by letting LIeq
d

(
P−1
d T lα

)
=

LId
(
P−1
d T lα

)
, we complete the proof.

It is noted that pd can be obtained as
´∞

0
LIeq

d

(
P−1
d T lα

)
·

fl (l) dl, and by (30), we have

pd =
λd

λeq
d−intfν + λd

, (31)

which is consistent with the result of Theorem 2.

V. NETWORK PERFORMANCE WITH SIC

In this section, we study how SIC affects the successful
transmission probabilities in D2D-enabled cellular networks.
The analysis is based on the stochastic equivalence models
proposed in section IV.

A. Successful Transmission Probability of Cellular Links

We conduct the analysis on a typical cellular link that
comprises a typical SIC-capable BS located at the origin and
its associated cellular user located at x0, where ‖x0‖ = r.
The equivalent interferers for the typical cellular link are
ordered by their received power at the typical BS such that
Pcgi ‖xi‖−α > Pcgj ‖xj‖−α ,∀ 0 < i < j. Before deriving
the successful transmission probability of the typical cellular
link, we first present two lemmas.

Given that n strongest equivalent interferers have been
canceled, the received SIR of the typical cellular link, i.e.,
the received SIR at the typical BS, can be expressed as

SIR(n)
c =

Pcg0r
−α

I
eq(n)
c

, (32)

where

Ieq(n)
c =

∑
xi∈Φeq

c−intf\{x0,x1,...xn}

Pcgi ‖xi‖−α (33)

is the cumulative interference for the typical cellular link.
Then, the successful transmission probability of the typical
cellular link given that n strongest equivalent interferers have
been canceled can be defined as

p(n)
c
4
= P

[
SIR(n)

c > T
]
. (34)

The expression of p(n)
c is given by the following lemma.

Lemma 3. Given that n strongest equivalent interferers have
been canceled, the successful transmission probability of the
typical cellular link is

p(n)
c =

ˆ ∞
0

ˆ ∞
0

2
(
λeq
c−intfπd

2
n

)n
dnΓ (n)

e−λ
eq
c−intfπξ(r,dn)fr (r) ddndr,

(35)

where fr (r) is given in (2) and

ξ (r, dn) =
δ

1− δ
Trαd2−α

n 2F1

(
1, 1− δ; 2− δ;−Tr

α

dαn

)
+d2

n.

(36)

Proof: Starting from the definitions of p(n)
c and SIR(n)

c ,

p(n)
c
4
= P

[
SIR(n)

c > T
]

= Er
[
L
I

eq(n)
c

(
P−1
c Trα

)]
=

ˆ ∞
0

L
I

eq(n)
c

(
P−1
c Trα

)
· fr (r) dr. (37)

The calculation of L
I

eq(n)
c

requires the distribution of the sum
of the order statistics of interfering powers, which is difficult
to obtain in the SIC scenario. However, it has been shown that
the order statistics of received powers in modern networks are
dominated by the distance [29]. Therefore, we can calculate
L
I

eq(n)
c

by relaxing the ordering of interfering powers to that of
interfering distances. Denote the distance from n-th equivalent
interferer to the origin by dn, then we have

L
I

eq(n)
c

(s) = E
[
exp

(
−sIeq(n)

c

)]
= Edn,Φeq

c−intf ,g

 ∏
xi∈Φeq

c−intf\{x0,x1,...xn}

e−sPcgi‖xi‖
−α


= Edn

[
e
−λeq

c−intf
´
Φ

eq
c−intf∩B(o,dn)

(
1−Eg

[
e−sPcgi‖xi‖

−α])
dxi

]

=

ˆ ∞
0

e
−λeq

c−intf
´
Φ

eq
c−intf∩B(o,dn)

(
1− 1

1+sPc‖xi‖−α
)

dxi
fdn (dn) ddn

=

ˆ ∞
0

e
−λeq

c−intf ·2π
´∞
dn

v

1+s−1P
−1
c vα

dv
· fdn (dn) ddn

=

ˆ ∞
0

e
−λeq

c−intfπ
δ

1−δ sPcd
2−α
n 2F1

(
1,1−δ;2−δ;− sPcdαn

)
fdn (dn) ddn.

(38)

From [30], the probability density function of dn is given by

fdn (dn) = e−λ
eq
c−intfπd

2
n ·

2
(
λeq
c−intfπd

2
n

)n
dnΓ (n)

. (39)



By plugging (39) into (38) and letting s = P−1
c Trα, we get

L
I

eq(n)
c

(
P−1
c Trα

)
=

ˆ ∞
0

e−λ
eq
c−intfπξ(r,dn) ·

2
(
λeq
c−intfπd

2
n

)n
dnΓ (n)

ddn, (40)

where ξ (r, dn) = δ
1−δTr

αd2−α
n 2F1

(
1, 1− δ; 2− δ;−Tr

α

dαn

)
+

d2
n. Then by plugging (2) (40) into (37), we complete the

proof.
A possible approach for simplifying the expression of p(n)

c

is to approximate dn by a fixed value d̃n, which equals the
expectation of dn, i.e.,

d̃n = E [dn] =
Γ
(
n+ 1

2

)√
πλeq

c−intfΓ (n)
. (41)

Then, p(n)
c can be approximated by

p(n)
c =

ˆ ∞
0

e−λ
eq
c−intfπξ̃(r,d̃n) · fr (r) dr, (42)

where fr (r) is given in (2) and

ξ̃
(
r, d̃n

)
=

δ

1− δ
Trαd̃n

2−α
2F1

(
1, 1− δ; 2− δ;−Tr

α

d̃n
α

)
.

(43)
Next, we study the probability of canceling n-th strongest

equivalent interferer. Given that all n− 1 stronger equivalent
interferers have been canceled, the received SIR of n-th
strongest interferer at the typical BS can be expressed as

SIR
(n)
c−intf =

Pcgn ‖xn‖−α

I
eq(n)
c−intf

, (44)

where

I
eq(n)
c−intf =

∑
xi∈Φeq

c−intf\{xn,x1,...xn−1}

Pcgi ‖xi‖−α (45)

is the cumulative interference for n-th strongest equivalent
interferer. Then, the probability of canceling (decoding) n-
th strongest equivalent interferer given that all n− 1 stronger
equivalent interferers have been canceled can be defined as

p
(n)
c−intf

4
= P

[
SIR

(n)
c−intf > T

]
. (46)

The expression of p(n)
c−intf is given by the following lemma.

Lemma 4. Given that all n−1 stronger equivalent interferers
have been canceled, the probability of canceling n-th strongest
equivalent interferer for the typical cellular link is

p
(n)
c−intf =

1

(µ+ 1)
n , (47)

where µ is given in (7).

Proof: Following the relaxation approach for the order
statistics of interfering powers in the proof of Lemma 3, we
can rewrite SIR

(n)
c−intf as

SIR
(n)
c−intf =

Pcgnd
−α
n

I
eq(n)
c−intf

. (48)

Then, we have

p
(n)
c−intf

4
= P

[
SIR

(n)
c−intf > T

]
= E

dn,I
eq(n)
c−intf

[
exp

(
−P−1

c TdαnI
eq(n)
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)]
= Edn

[
L
I

eq(n)
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(
P−1
c Tdαn

)]
=

ˆ ∞
0

L
I

eq(n)
c−intf

(
P−1
c Tdαn

)
· fdn (dn) ddn. (49)

The Laplace transform of Ieq(n)
c−intf is obtained as

L
I

eq(n)
c−intf

(s) = e
−λeq

c−intfπ
δ

1−δ sPcd
2−α
n 2F1

(
1,1−δ;2−δ;− sPcdαn

)
.

(50)
Hence,

L
I

eq(n)
c−intf

(
P−1
c Tdαn

)
= exp

(
−λeq

c−intfπµd
2
n

)
, (51)

where µ is given in (7). Then by plugging (39) (51) into (49),
we complete the proof.

Based on Lemma 3 and 4, we can derive the successful
transmission probability of the typical cellular link.

Theorem 3. The successful transmission probability of cellu-
lar links with infinite SIC capability is

pSIC
c = pc+

∞∑
n=1

(
n∏
i=1

p
(i)
c−intf

)(
n−1∏
i=0

(
1− p(i)

c

))
p(n)
c , (52)

where pc, p
(n)
c , p

(i)
c−intf are given in (6) , (35) , (47) respec-

tively.

Proof: For the typical cellular link, we define the event
of its successful transmission without SIC as

E0 : SIR(0)
c > T, (53)

and the event of its successful transmission with n-level
(n ≥ 1) SIC as

En :

(
n⋂
i=1

SIR
(i)
c−intf > T

)
∩

(
n−1⋂
i=0

SIR(i)
c < T

)
∩
(
SIR(n)

c > T
)
.

(54)
Using the assumption that the interference to each user is
independent, we get

P [En] =

{
p

(0)
c = pc, n = 0,(∏n
i=1 p

(i)
c−intf

)(∏n−1
i=0

(
1− p(i)

c

))
p

(n)
c , n ≥ 1.

(55)
Therefore, the successful transmission probability of cellular
links can be obtained as pSIC

c =
∑∞
n=0 P [En].

Corollary 1. The successful transmission probability of cel-
lular links with (finite) N -level (N ≥ 1) SIC capability is

pN−SIC
c = pc +

N∑
n=1

(
n∏
i=1

p
(i)
c−intf

)(
n−1∏
i=0

(
1− p(i)

c

))
p(n)
c ,

(56)
where pc, p

(n)
c , p

(i)
c−intf are given in (6) , (35) , (47) respec-

tively.
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Figure 3: Successful transmission probabilities of cellular and
D2D links with SIC.

B. Successful Transmission Probability of D2D Links

We consider a typical D2D link with M -level SIC receivers.
The assumption of finite-level SIC receiver is motivated by
the limited computational capabilities of D2D users. The
derivation of the successful transmission probability of D2D
links is quite similar to that of cellular links, and hence we
directly present the results and omit their proofs.

Lemma 5. Given that n strongest equivalent interferers have
been canceled, the successful transmission probability of the
typical D2D link is

p
(n)
d =

ˆ ∞
0

ˆ ∞
0

2
(
λeq
d−intfπk

2
n

)n
knΓ (n)

e−λ
eq
d−intfπκ(l,kn)fl (l) dkndl,

(57)

where fl (l) is given in (1) and

κ (l, kn) =
δ

1− δ
T lαk2−α

n 2F1

(
1, 1− δ; 2− δ;−T l

α

kαn

)
+k2

n.

(58)

Lemma 6. Given that all n−1 stronger equivalent interferers
have been canceled, the probability of canceling n-th strongest
equivalent interferer for the typical D2D link is

p
(n)
d−intf =

1

(µ+ 1)
n , (59)

where µ is given in (7).

Theorem 4. The successful transmission probability of D2D
links with (finite) M -level (M ≥ 1) SIC capability is

pM−SIC
d = pd +

M∑
n=1

(
n∏
i=1

p
(i)
d−intf

)(
n−1∏
i=0

(
1− p(i)

d

))
p

(n)
d ,

(60)
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Figure 4: Successful transmission probability of cellular links
with SIC vs. density of D2D links.

where pd, p
(n)
d , p

(n)
d−intf are given in (17) , (57) , (59) respec-

tively.

C. Discussions and Numerical Results

Now that we have developed expressions for the successful
transmission probabilities of cellular and D2D links with SIC
capabilities, based on the stochastic equivalence models. It is
noted that the derived analytical expressions are not the exact
results of corresponding successful transmission probabilities,
since approximated models are used in the derivation. We pro-
vide some numerical results to compare the analytical results
with the actual (simulation) results. The system parameters are
set as α = 4, Pc = Pd = 1, λc = λd = 0.01, T = 1.

Fig.3 shows the successful transmission probabilities with
SIC capabilities. As can be observed, there exist gaps between
the analytical results of pN−SIC

c , pM−SIC
d and corresponding

simulation results. The analytical results can be regarded as
lower bounds on the successful transmission probabilities. The
analytical results based on approximated dn (see (41) (42))
and kn are also plotted in the figure, through which we can
find that the results of the approximated analytical expressions
closely match those of the exact analytical expressions. There-
fore, the approximated analytical expressions can be employed
to simplify the calculation of the successful transmission
probabilities. In addition, as shown in the figure, 2-level SIC
can provide almost 50% performance improvement for the
network; however, when the SIC level is larger than 2, SIC
cannot further improve the network performance. Considering
the hardware cost of multi-level SIC, 1- and 2-level SIC can
be adopted in practical networks.

Fig.4 shows the successful transmission probability of cel-
lular links with SIC vs. the density of D2D links. As expected,
increasing the density of D2D links leads to a decrease in the
successful transmission probability of cellular links. However,
from this figure we can observe that SIC can compensate part
of the performance loss of cellular links. For example, 1-level



SIC at the cellular receiver can compensate the performance
loss generated by D2D interferers of density λd = 0.0035
(see point A), and 2-level SIC corresponds to λd = 0.0045
(see point B).

VI. CONCLUSION

In this paper, we study the performance of SIC in large-
scale D2D-enabled cellular networks using the tools from
stochastic geometry. We derive the successful transmission
probabilities of the network without SIC as the baseline results.
To simplify the interference analysis, we propose the approach
of stochastic equivalence of the interference, by which the two-
tier interference can be represented by an equivalent single-tier
interference. Based on the stochastic equivalence models, we
derive the successful transmission probabilities of cellular and
D2D links with infinite and finite SIC capabilities. The SIC
gains are validated by analytical and numerical results.
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