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Abstract—In this paper, we tackle the spectrum allocation
problem in cognitive radio (CR) networks with time-frequency
flexibility consideration using combinatorial auction. Different
from all the previous works using auction mechanisms, we
model the spectrum opportunity in a time-frequency division
manner. This model caters to much more flexible requirements
from secondary users (SUs) and has very clear application
meaning. The additional flexibility also brings theoretical and
computational difficulties. We model the spectrum allocation as
a combinatorial auction and show that under the time-frequency
flexible model, reaching the social welfare maximal is NP hard
and the upper bound of worst-case approximation ratio is

√
m,

m is the number of time-frequency slots. Therefore, we design
an auction mechanism with near-optimal winner determination
algorithm, whose worst-case approximation ratio reaches the
upper bound

√
m. Further we devise a truthful payment scheme

under the approximation winner determination algorithm to
guarantee that all the bids submitted by SUs reflect their
true valuation of the spectrum. To further address the issue
and reach optimality, we simplify the general model to that
only frequency flexibility is allowed, which is still useful, and
propose a truthful, optimal and computationally efficient auction
mechanism under modified model. Extensive simulation results
show that all the proposed algorithms generate high social welfare
as well as high spectrum utilization ratio. What’s more, the actual
approximation ratio of near-optimal algorithm is much higher
than the worst-case approximation ratio.

I. INTRODUCTION

With the ongoing growth of wireless communication ser-

vices, the demand for radio spectrum increases dramatically.

However, the spectrum resource is scarce because of the long-

existed rigid licence policy. Former studies [1] [3] show that

from a time-spatial view, there are a large number of under-

utilized spectrum holes in the current wireless networks. To

overcome the low-efficiency, cognitive radio (CR) networks

was proposed [4]. In the CR networks, the original licensed

operators are called primary users (PUs) and the users who

want to exploit the spectrum opportunity are called secondary

users (SUs). To implement CR, an efficient, robust and fast

dynamic spectrum access (DSA) mechanism is needed to bring

the spectrum opportunity from PUs to SUs and provide enough

incentive for PUs. Extensive works have been carried out on

this topic and most of them cooperate economical tools such as

game theory [6], contract theory [7], auction [8], commodity

pricing [5] [19] and etc. Among those mechanisms, auction is

preeminent because of its fairness, efficiency and valuation

independence [9]. Various auction mechanisms have been

proposed to cope with the DSA problem [11] [13] [15].

In general, the DSA auction mechanisms can be divided

into two categories: periodical and online auction. Periodical

auction means that the spectrum opportunity is sold periodi-

cally by the auctioneer (a single PU or an agent called Primary

Operator(PO) of many PUs) and the interval between different

auctions is relatively long (30 minutes or longer). As for online

auction, the auction process is done on every new arrival of

SU. For both online and periodical auction, it is critical to

guarantee an economical property called truthfulness [9], that

is to say the bids submitted by the SUs reflect their true

valuation for the spectrum opportunity. The property is crucial

in that if any SU can lie to gain a larger utility through

auction, efficiency and fairness of auction mechanism can

not be achieved. In [17], Gandhi proposed a general central-

ized periodical auction mechanism for spectrum allocation in

cognitive radio networks. Contrast to the centralized method,

Chen [18] designed a distributed algorithm under an extended

system model. To extend the auction to deal with muti-seller

problem, Gao [16] proposed a truthful DSA mechanism based

on progressive auction. In [14], Gopinathan not only consid-

ered single round auction but also extended it to repeated

auction with consideration of fairness and truthfulness as well.

All the above auction mechanisms are periodical auction and

online auction is also widely used [15] [20]. In [21], not only

preemption but also a time-cheating problem was considered

in online fashion. Despite all the previous works, a significant

problem is not fully addressed: the time-frequency flexibility

of SUs’ requirements.

To illustrate the time-frequency flexibility of SUs’ require-

ments clearly, we will firstly give a sketch of our system

model. In our model, a primary operator(PO) presents as an

auctioneer. Periodically, this PO contacts with the spectrum

opportunity data center to obtain the free spectrum from PUs.

The PO then divides the spectrum opportunity by frequency

and time as shown in Figure 1. We can see that colored

piece in Figure 1 means a spectrum opportunity from t0
to t0 + Δt at frequency f0 to f0 + Δf . We denote this

piece of spectrum opportunity as a slot. The reason for the

division lies in the heterogeneity and time-frequency flexibility

of SUs’ requirements as shown in Figure 1. In Figure 1,

SU1’s requirement is varying over time and frequency. At the
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Fig. 1. SUs’ Heterogenous Requirements

beginning of the period, he may download some files from the

Internet, but after the anticipated downloading time, the extra

bandwidth is not necessary because he only wants to browse

some web pages. As for SU2, he only wants to check his

mail and therefore, the period for him is too long that he only

needs a part of the period over constant frequency. SU3 is a

secure device so that he needs to jump from one frequency

to another in the same auction period. SU3’s requirement is

partially overlapped with SU1’s. As far as our knowledge, all

the previous works on periodical auction considered different

SUs’ requirements as fixed over the auction period and the

SUs can only buy the entire time span of fixed frequency or

nothing. The time-frequency two dimensional heterogeneity

and flexibility of SUs’ requirements are not fully considered.

In our paper, we model every slot of the spectrum oppor-

tunity as an individual good to be sold. We allow a buyer to

submit a bid consisting of an arbitrary bundle of the goods

and the value he is willing to pay for them to the auctioneer.

Therefore, the time-frequency flexible requirements can be

fulfilled. This kind of auction is called combinatorial auction

in economics [22]. To make this auction framework actually

work, our paper aims at solving two critical problems:1.Design

winner determination mechanism which can run in a tolerable

time and with a high efficiency (maximal social welfare); 2.

Design a payment policy to guarantee truthfulness. However,

we will see in the section III, that the winner determination

problem under the fully flexible requirement model is NP

hard. Therefore, we analyze the upper bound of polynomial

time algorithms’ worst-case approximation ratio and find a

polynomial-time approximation algorithm with an worst-case

approximation ratio reaching the upper bound. Based on

the winner determination algorithm, we propose a payment

scheme to guarantee the truthfulness in the process of bids

submission. To further address the problem, in section IV we

put an additional restriction on the SUs’ requirements and find

an optimal algorithm for winner determination problem under

this simplified model. For the simplified model, we provide

a truthful payment mechanism based on VCG mechanism

design.

To our knowledge, our work has the following key contri-

butions:

• We model the PO’s spectrum stack in a new way by

considering the problem of heterogeneous requirements

with time-frequency flexibility from SUs, and formulate

the problem as combinatorial auction problem.

• To solve proposed the combinatorial auction problem, we

firstly prove the winner determination problem under the

time-frequency flexible auction model is NP hard and

then, design a novel auction mechanism consisting of a

polynomial time and near-optimal winner determination

algorithm and a novel payment mechanism that guaran-

tees the truthfulness of the auction mechanism.

• To further address the problem and reach the optimal

solution, we reduce the general time-frequency flexible

model to only frequency flexible, give an optimal solution

to the winner determination problem under simplified

system model and utilize the VCG mechanism to design

a payment mechanism that guarantees truthfulness.

The rest of this paper is organized as follows. In Section II,

we describe the general framework of cognitive radio networks

and propose time-frequency two dimensional flexible system

model. In Section III, we provide an auction mechanism that is

computationally efficient, near-optimal and truthful under the

two dimensional flexibility. In Section IV, we will simplify

the general system model without losing application meaning

and propose an optimal, computationally efficient and truthful

auction mechanism. Section V provides extensive simulation

results show the performance of our proposed algorithms. In

section VI, we give the conclusion and show some possible

future works.

II. SYSTEM MODEL AND PROBLEM FORMATION

In this paper, we consider the whole CR network model as

Figure 2. The model is a four-layer model:the first layer is the

PU networks and they are the source of spectrum opportunity;

the second layer contains the spectrum data centers and they

collect the information of spectrum opportunity from the PUs

via various ways for example, large-scale sensor networks[29];

the third layer lies the primary operators which contact the

data center for the spectrum opportunity and sell them to SUs

in the fourth layer. In our paper, we only concentrate on the

problem that how the PO sells the acquired spectrum to SUs.

Therefore, from PO’s perspective the spectrum is known and

stable during one auction interval. As shown in Figure 1, the

spectrum opportunity owned by PO is divided by time and

frequency. We denote the entire spectrum opportunity of PO

as S. We now denote the time interval as Δt and the frequency

interval as Δf and everyΔt × Δf spectrum that starts from

(t0, f0) as s(t0,f0). We assume that in one auction period,

the spectrum opportunity remains unchanged and there are

totally m slots. Therefore, we can map the (t0, f0) to i, where

i ∈ {1, ...,m}. Hence, we change the notation of s(t0,f0) to

si,where i ∈ {1, ...,m}. PO informs SUs of this mapping at

the beginning of the auction period.

As illustrated above, the PO divides the acquired spectrum

opportunity to S = {s1, s2, ....sm} and sells them to n SUs

denoted as U = {1, 2, ...., n}. The bid submitted by SU i can
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Fig. 2. Cognitive Radio Network Model

be denoted as bi = {Ci, vi}, where Ci ⊆ S and vi is the SU

i’s valuation of Ci. The auction mechanism needs to decide

who win the auction and charge SUs to give them incentive

to reveal their true valuation of the goods. The winning SUs

are denoted as W = {w1, w2, ...., wk}, where wi ∈ U . The

payments of SUs are denoted as P = {p1, p2, ..., pn} and

auctioneer charges the losing SUs nothing. Therefore, the net
utility of SU i is defined as

ui =

{
vi − pi i wins

0 i loses
(1)

In the rest of the paper, we use “seller” and “buyer” as the

equivalent expressions for PO and SUs, respectively. We will

firstly introduce the combinatorial auction model and illustrate

how our problem is different from the economical problem.

Definition 1. Combinatorial Auction: In a combinatorial

auction, a buyer submits multiple bids to the auctioneer and

every bid consists of a bundle of goods he wants to buy

and his valuation of that. The final resource allocation must

fit two constraints: 1.No good is assigned to more than one

buyer; 2. No buyer receives more than one bundle of goods.

The combinatorial auction mechanism design consists of two

interrelated parts: winner determination and payment mecha-

nism. The task of winner determination is to find the winners,

sum of whose declared value(not necessarily be the truthful

value) is maximized. The payment mechanism design’s goal

is to provide a payment policy to charge the winners so that

submitting the truthful value to auctioneer for the winner

determination is dominating strategy for every buyer. In other

words, the payment mechanism guarantees that the winner

determination mechanism does maximize the social welfare.

The winner determination and payment mechanism design

together are called combinatorial auction problem (CAP).

Remarks: We can see from the definition that in general

case of combinatorial auction, one buyer only receives at most

one bundle of goods but can submit bids on multiple bundles.

Different from the general case, in our model, we assume one

buyer can submit bid on only one bundle of goods for explicit

analysis of the problem. In our future work, we will extend it

too the general case.

Definition 2. Cognitive Radio Winning SUs Determina-
tion Problem(CRWDP): For every subset T ⊆ S, let bj(T )
denote the value of buyer j ∈ U for T . We use e(T, j) = 1
to denote that the buyer j wins the bundle T and e(T, j) = 0
to denote the buyer loses. The winner determination problem

is defined as follows:

max
∑
j∈U

∑
T⊆S

bj(T )e(T, j) (2)

s.t.
∑
T�si

∑
j∈U

e(T, j) ≤ 1, ∀si ∈ S (3)

∑
T⊆S

e(T, j) ≤ 1, ∀j ∈ U (4)

∀i ∈ U , ∃T ∗
i ⊆ S s.t. bi(T ∗

i ) > 0 and ∀T �= T ∗
i , bi(T ) = 0.

Remarks:The definition of CRWDP shows that our goal is

to maximize the social welfare, that is the sum of winners’

value. The first constraint indicates that one good is assigned

to only one buyer. The second means one buyer can only

have one bundle of goods. The third constraint shows that

in this CR network, the buyer can submit up to one bundle

of goods, which means he can only choose one bundle of

time-frequency slots during this period. Notice that the second

and the third constraint seem to be equivalent. However, the

second constraint involves with the algorithm design and the

third constraint limits the pattern of SUs’ bids.

Definition 3. The Truthful Mechanism Design Prob-
lem(TMDP): For any buyer i ∈ U , let b∗i = {C∗

i , v
∗
i } denote

the truthful bid of the buyer and bi = {Ci, vi} denote the

declared bid of buyer i. Generally, we can assume Ci ⊇ C∗
i ,

because the buyer wants his requirements to be fulfilled. Later

in Section III, we can see it is quite straight-forward that

Ci = C∗
i . As for vi, there is no constraint. Further, we use

ui(b
∗
i ) = v∗i − pi(b

∗
i ) and ui(bi) = v∗i − pi(bi) to denote

the utility when buyer i bids truthfully and bids untruthfully,

respectively. The TMDP problem is to design a payment

mechanism such that

ui(b
∗
i ) ≥ ui(bi), ∀vi ∈ R+, Ci ⊇ C∗

i (5)

III. A TRUTHFUL APPROXIMATION AUCTION MECHANISM

TO SOLVE CAP WITH TIME-FREQUENCY FLEXIBILITY

A. The Computational Complexity of Optimally Solve CRWDP

Before we provide our auction mechanism of this problem,

we will show that solving CRWDP optimally is NP hard and

the upper bound of approximation ratio under polynomial time

algorithm is
√
m.

Theorem 1. The CRWDP is NP hard to solve unless NP =
ZPP .

Proof: We will prove this theorem using reduction from

the maximum independent set problem (MISP) [23]. We will

build the CRWDP from the MISP. In MISP, we assume the

edges are the goods. Therefore, goods set S will now become

the edge set E and we use every vertex to denote a buyer.



Algorithm 1. The Sorting Based Greedy Mechanism for
CRWDP
Initial State

1: All buyers submit their bids bi = {Ci, vi} to the auctioneer;
2: W = ∅

Reordering Process

3: Reorder the bid to a List L = { v∗
1√|C∗
1 | ,

v∗
2√|C∗
2 | , ....,

v∗
3√|C∗
3 |}

such that v∗1/
√|C∗

1 | ≥ v∗2/
√|C∗

2 | ≥ .... ≥ v∗n/
√|C∗

n|
Winner Determination

4: FOR i = 1ton DO:

5: IF C∗
i ∩ (

⋃
j∈W C∗

j ) = ∅
6: W = W ∪ {i}
7: else:
8: i’s bid is denied
9: END IF

10; END FOR
11: output W

For vertex(buyer) i, we assume his interested bundle is the

set of his adjacent edges and vi = 1. For any two winners

wi, wj in W , their allocated bundles Twi
, Twj

must satisfy

Twi ∩ Twj = ∅. And this indicates that the set of vertex in W
is an independent set of the graph. The social welfare is the

same as the size of this set. The optimal social welfare is at

least K if and only if there exists an independent set of size

K. Therefore, we reduce MISP,which is NP hard, to CRWDP.

From the reduction we can see, the CRWDP is NP hard.

Theorem 2. The upper bound of the approximation ratio of

CRWDP is
√
m, for any polynomial time algorithm.

Proof: As shown in theorem 1, the MISP problem can

be reduced to CRWDP. Therefore, the approximation ratio

of any polynomial algorithm for CRWDP should not exceed

the approximation ratio of MISP problem. The upper bound

of approximation ratio of MISP is n1−ε [24]. And in the

reduction there is a implicated assumption: m ≤ n2, and this

is easy to be achieved by a proper division of the spectrum

opportunity. Therefore, we can conclude that the upper bound

of the approximation ratio of CRWDP is
√
m

B. Approximation Method to Solve the CRWDP

Now we will design an approximation method with the best

approximation ratio achievable as described in Theorem 2. The

algorithm is depicted as Algorithm 1.

The algorithm consists of two steps:

• Step1: In the first step, we calculate a norm for every bid

: vi/
√|Ci| and then reorder the bid by the norm. Without

loss of generality, we assume we can have a method to

deal with tied bids, for example, randomly arranging, and

the final order is descending on the norm vi/
√|Ci|.

• Step2: A greedy algorithm generates the winner set W .

The algorithm examines every bid in L sequentially and

grants it if it does not overlap with all the previously

granted bids. If it does, it will be denied.

We can see that the step 2 is a greedy algorithm and the key

part of this algorithm is the first step. Intuitively, we should

choose a norm to push the bids, which have a better chance

to appear in optimal allocation, towards the beginning of the

list L. The norm should have two characteristics: 1.we want

the bids with higher valuation to have a larger norm; 2.we

want the bids with smaller bundle size to have higher norm.

From the illustration above we can see that sorting the bids

by descending average valuation per good, i.e. vi/|Ci|, is a

possible choice, but we can generalize the norm to vi/|Ci|l
where l ≥ 0. When we choose l = 1, the approximation ratio

of this algorithm is m, which deviates from the upper bound

of the possible approximation ratio. As illustrated in algorithm

1, we choose l = 1
2 and will prove that the approximation ratio

of our algorithm is at least
√
m.

Theorem 3. The proposed algorithm has polynomial-time

computational complexity.

Proof: In step 1, the computational complexity of reorder-

ing process is O(n log(n)). In step 2, we only need to go over

n bids to decide the final allocation. Therefore, computational

complexity is O(n log(n)).
Theorem 4. The proposed algorithm can approximate the

optimal allocation within a factor of
√
m.

Proof: Recall for every buyer i ∈ U , his bid is denoted

as bi = {Ci, vi}. We now define the cardinality of Ci as

ci = |Ci| and define the norm as ni = vi/
√
ci. We assume

that the OPT is the set of winning bidders in the optimal

solution of CRWDP. Then the maximal welfare can be denoted

as vopt =
∑

i∈OPT vi. Then we denote the solution obtained

by our algorithm as APP and the approximated social welfare

is vapp =
∑

i∈APP vi. We now prove that:

vopt ≤
√
mvapp (6)

Without loss of generality, we assume OPT and APP have

no bid in common. If they have, one can remove the common

bids. The approximation and optimal solutions of the removed

problem are equivalent to the original problem.

Let us consider the expression of vapp first. We can see that

vapp =
∑

i∈APP

vi ≥
√ ∑

i∈APP

v2i =

√ ∑
i∈APP

n2
i ci (7)

As for vopt, we have Cauchy-Schwarz inequality such that

vopt =
∑

i∈OPT

ni
√
ci ≤

√ ∑
i∈OPT

n2
i

√ ∑
i∈OPT

ci (8)

The expression
∑

i∈OPT ci means the total amount of goods

assigned in the optimal allocation and therefore, it is bounded

by m, the total number of goods.

We then have the following expression:

vopt ≤
√ ∑

i∈OPT

n2
i

√
m (9)

If we want to prove the proposed theorem, it will be enough

to prove that: ∑
i∈OPT

n2
i ≤

∑
i∈APP

n2
i ci. (10)

We then consider the optimal solution OPT . As assumed

above, there is no bid that appears in both OPT and APP .



However, the proposed algorithm does go through the whole

bids set. So we can conclude that for any i, i ∈ OPT
the following statement stands: when it is considered in the

proposed algorithm, there is a good sl ∈ Ci that has already

been allocated previously in the approximation algorithm, that

is to say, there is a bj j ∈ APP , where nj > ni and sl ∈ Cj .

For any one bid in APP , there can be a number of bids

in OPT that fits the above mentioned condition. If for a bi,
i ∈ OPT , there exists a j ∈ APP , where nj > ni and

Ci∩Cj �= ∅, we put it in an subset of OPT denoted as OPTj .

In another word, OPTj denotes all the bids that associate with

j ∈ APP and a number of different bids from OPT may

associate with the same bid bj in APP . However, we should

notice that at most cj bids will be associated with bj , because

no two bids in OPT intersect with each other. Finally we

have: ∑
i∈OPTj

n2
i ≤ n2

jcj (11)

where j ∈ APP . Then we have:∑
j∈APP

∑
i∈OPTj

n2
i ≤

∑
i∈APP

n2
jcj (12)

We also have: ∑
i∈OPT

n2
i ≤

∑
j∈APP

∑
i∈OPTj

n2
i (13)

We combine (10), (11) and (12) so that (9) is proved. The

proof is concluded.

Therefore, Our approximation algorithm reaches the best

approximation ratio possible for this problem.Moreover, we

should notice that the approximation ratio only indicates

worst-case scenario. In the simulation part, we will show

that the performance difference between optimal solution and

approximation solution is very small.

C. Payment Scheme and Economical Robustness of Proposed
Mechanism

It is critical to notice that the social-welfare calculated in

Section III.A is based on the declared bids of buyers. In this

part, we will address the other side of the auction mechanism

design: TMDP problem, that is to say, we need a payment

mechanism to guarantee SUs to submit their true value at the

first place.

Definition 4. Payment Scheme: Recall L is the list in

which all buyers are reordered by the norm in the first step

of algorithm 1. And for buyer i ∈ L, we denote a buyer l(i)
as the first buyer following i in L that has been denied but

would have been granted were it not for the presence of i. We

have the following payment:

• i pays zero if his bid is denied or l(i) does not exist.

• If there exists an l(i) and i’s bid is granted, he pays√
ci ∗ nl(i), where nl(i) is the norm of l(i).

Before we prove the truthfulness of our payment scheme,

we will firstly give a lemma to show the sufficient conditions

for a truthful payment mechanism.

Lemma 1. The combinatorial auction for SUs is truthful if

and only if the following three conditions hold:

• Ex-post Budget Balance: That means the buyers are all

rational so that they will not pay more than their value

of the goods.

• Monotonicity: A buyer who wins with b = {C∗, v∗}
can still win with any v′ ≥ v∗ and any C ′ ⊆ C∗, when

others’ bids are fixed.

• Critical Payment: There exists a critical value vc ≤ vi
for a winner i, so that he only needs to pay this critical

value to win. That is to say, if others’ bids are fixed, the

payment of a certain winner does not depend on how he

reports his bid.

Proof: We will split the proof to different conditions and,

in the following we use {C, v} to denote the truthful bid and

{C ′, v′} to denote the any other possible bid.

• A truthful buyer will never receive negative utility be-

cause his utility is zero while losing and he only needs

to pay the critical payment when he wins.

• A winning bidder will never fake bid on the set of goods

that he is purchasing. That is to say, he will not be

worse off by reporting {C, v′} rather than {C ′, v′}, where

|C| < |C ′|. Note that |C| > |C ′| is not possible because

the buyer’s requirement will not be fulfilled. Denote the

payment for the bid {C ′, v′} by p′ and for {C, v′} by p.

For every q < p, bidding {C, q} will lose since p is a

critical value. By monotonicity, {C ′, q} will also lose for

every q < p and therefore, the critical value p′ ≥ p. It

follows that by bidding {C, v′} instead of {C ′, v′}, the

buyer will still win and his payment will not increase and

the net utility remains the same. Therefore, there is no

incentive for him to lie.

• We now need to show that no winning buyer will fake

bid on the valuation of his bundle of goods. Assume

that {C, v} is a winning bid with a payment pc(critical

value). As long as v′ is greater than pc, the buyer will

still win with the same payment. When v′ < pc, the buyer

gains zero utility because he will lose the auction. Thus,

misreporting his value will not be beneficial.

• The previous two paragraphs show the cases of winners

faking the bid. As for the losers, it is obvious that if they

report their value higher to win, the payment will exceed

their valuation and thus they receive negative utility. And

it is not possible for them to reduce the size of the bundle

they are bidding for because it is meaningless to obtain

goods less then their requests.

Theorem 5. The proposed auction mechanism is a truthful

mechanism.

Proof: According to Lemma 1, we only need to verify that

our mechanism satisfies the three properties. Ex-post budget

balance is guaranteed in our auction mechanism because we

assume the SUs are rational buyers. Monotonicity also stands

because by increasing value or decreasing the number of

desired goods, the SU’s position in L can only move forward



and make it easier to win. The critical payment condition is

met because i wins as long as he appears in L before l(i).
The payment is exactly at the transition point between i being

before and after l(i). Therefore, we can conclude from the

Lemma 1 that our auction mechanism is a truthful one, that

is to say no participant in our auction will lie about his true

valuation and the economical robustness is guaranteed.

IV. OPTIMAL AND TRUTHFUL AUCTION MECHANISM FOR

A RESTRICTED CASE OF THE GENERAL MODEL

A. A Rational Modification of the System Model

As illustrated in section III, under the time-frequency two

dimensional flexibility, no optimal solution can be found

in polynomial time and only approximation algorithm with

approximation ratio no better than
√
m can be found. In this

section, we will modify the general system model presented

in section II to a little more restricted, but still useful, model

and design an optimal and truthful auction mechanism under

the modified model.
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Fig. 3. Modified System Model with Only Frequency Flexibility

We will firstly illustrate how the model is changed. As

shown in Figure 3, two assumptions are different from the

general model.

• Full Time Usage: In the first place, the SUs cannot

choose to use partial time of the whole auction period

but have to buy full-time usage or nothing.

• Consecutive Requirement: In the second place, the SU

can only use adjacent frequencies, that is to say, for any

SU, the desired frequency is an interval [f0, f1],but not

[f0, f1] and [f2, f3], where[f0, f1] ∩ [f2, f3] = ∅.

We do realize that the first restriction undermines the flex-

ibility of our mechanism. However, it is a necessary tradeoff

to reach the optimality. The rationale behind the second re-

striction is that we assume SUs are all single-antenna devices,

which is common in today’s mobile devices. The reason why

we do not use the single-antenna assumption in the general

model is that it will make the CRDWP more complicated to

solve. However, under the restricted model, this consecutive

requirements nature makes the optimal solution easy to reach.

What’s more, the application meaning of the model is still

acceptable. In our model, PO can divide the frequency he

obtained without so much concern about the requirements of

SUs. For example, in the previous auction models [18] [16],

the auctioneer must decide the bandwidth to conduct a auction.

If auctioneer chooses the auctioned bandwidth to be too large,

this choice may exceed the requirements of most SUs and no

one is willing to pay high for the too large spectrum and thus

reduce the profits of PO. However, in our model, the auctioneer

can just divide all spectrum into reasonably thin slices and list

them to SUs like a supermarket. SUs can freely choose any

consecutive combination of frequency to form whatever large

or small bandwidth they need. We now define the modified

model as follows:

In the modified DSA model, the PO owns the spectrum

opportunity and divides it only by frequency, the goods

set is redefined as S = {f1, f2, ...., fm}, where fi is the

starting frequency point of the ith interval: [fi, fi + Δf ],
and f1 ≤ f2 ≤ ..... ≤ fm. Because in this model, only

consecutive frequency can be required, we redefine the Ci

as a close interval Ci = [r, q], which means the SU wants

the frequency that starts from fr and ends at fq . Further, we

give a new notation: h([fi, fj ]) to denote the highest valuation

submitted to auctioneer on [fi, fj ]. If there is no bid on [fi, fj ]
we will set it to 0. Moreover, we define G = {T |T ⊆ S
and T fits the Consecutive Requirement condition}. Then we

give a more succinct definition of the CRWDP, as CRWDP-C

(Constrained).

Definition 5 CRWDP-C: The problem of CRWDP-C can

be formulated as:

max
∑
T⊆G

h(T )eT (14)

s.t.
∑
T�fi

eT ≤ 1, ∀fi ∈ S (15)

eT = {0, 1}, ∀T ∈ G (16)

∀i ∈ U there is one and only T ∗
i ⊆ S s.t. bi(T ∗

i ) > 0, for

all other T �= T ∗
i , bi(T ) = 0. eT = 1 means that the highest

bid on T will be accepted in the final allocation and eT = 0
means it will not.

The TMDP is not changed and we will tackle them sepa-

rately in the following.

B. Optimal Solution for CRWDP-C with a Dynamic Program-
ming Algorithm

Different from CRWDP, the CRWDP-C can be solved

optimally in polynomial time. We will give our algorithm

first and prove the optimality and computational efficiency.

We use h([i, j]) to denote h([fi, fj ]) for simplicity and define

a function whois(h[i, j]) to return the buyer who submits

the highest value on [i, j]. OPTa denotes all the intervals

that are allocated in the optimal allocation and W denotes

all the winners. Further, we use vopt to denote the optimal

social welfare. Algorithm 2 generates the optimal solution of

CRWDP-C and the basic idea behind the algorithm is that the

maximal social welfare of first k + 1 frequency slices can be

evaluated by evaluating the maximal social welfare of first l



Algorithm 2. Dynamic Programming for Optimal Solution
of CRWDP-C
Initial State

1:
All buyers and sellers submit its bid bi = {Ci, vi}to the
auctioneer;

2: Calculate the h([i, j]) for all i, j ∈ {1, 2, ....,m}
Calculate Optimal Solution

3: Set: vopt(1) := h([1, 1]), OPTa(1) := [1, 1], W = ∅, r = 2
4: WHILE r ≤ m DO:
5: vopt(r) := h([1, r]) and OPTa(r) := [1, r].
6: FOR l = 2 to r do:
7: IF vopt(l − 1) + h([l, r]) > vopt(r) THEN:
8: vopt(r) = vopt(l − 1) + h([l, r])
9: OPTa(r) = OPTa(l − 1) ∪ [l, r]

10: END IF
11: END FOR
12: r = r + 1
13: END WHILE
14: FOR [i, j] in OPTa(m) DO:
15: W = W ∪ whois(h([i, j]))
16: END FOR

17:
OPTa = OPTa(m) vopt = vopt(m) and the winners are
W .

frequency slices and adding h([l+ 1, k+ 1]). If we have vopt
for all l ≤ k and go over all 0 ≤ l ≤ k, we can calculate vopt
for k + 1 frequency slices.

Theorem 6 Algorithm 2 achieves optimal solution OPTa

for CRWDP-C and the computational complexity is O(n2).
Proof: The computational complexity for this algorithm is

obviously O(n2). For the optimality, we will do induction on

the number of frequency slices m to prove OPTa is an optimal

allocation.

• When m = 1, it is clear that OPTa(m) = {[1, 1]} is an

optimal solution.

• Suppose that ∀m ≤ k OPTa(m) is an optimal solution

for the auction of the first m frequency slices. We will

consider if the algorithm 2 generates optimal allocation

for m = k+1 frequency slices. Because of the consecu-

tive requirement property of this model, if the k+1th fre-

quency slice is included in the optimal solution, it must be

in the form of [j+1, k+1] where j ≤ k. As assumed, we

have OPTa(j) an optimal allocation for first j frequency

set. Then we have OPTa(k+1) = OPTa(j)∪[j+1, k+1]
and vopt(k+1) = vopt(j) + h([j +1, k+1]). Algorithm

2 searches every possible j and will find the optimal

allocation for the first k + 1 frequency slices under the

induction assumption.

• Based on the induction hypothesis, we can conclude

that OPTa(m) is the optimal solution for the whole m
frequency slices auction.

Therefore, we solve the CRWDP-C optimally in polynomial

time and we will begin to design the payment scheme to guar-

antee the economical truthfulness of the auction in modified

model.

C. Truthful Payment Scheme for the Combinatorial Auction in
Modified System Model

As illustrated in section I, only a truthful auction is a

meaningful auction. For the combinatorial auction in the mod-

ified system model, we will use generalized VCG mechanism

proposed by Clarke[25] and Groves[26] to design a truthful

payment mechanism. Clarke and Groves showed that if in an

auction mechanism the winner determination can be solved

optimally, that is to say, the final allocation can maximize the

social welfare, then for a certain bidder, the payment should be

the sum of the declared valuation of other bidders minus the

sum of such valuation that would have been obtained if he had

not participated. In another word, the payment is externality

of the buyer on the auction. Under this payment scheme, the

truthfulness of auction can be guaranteed. We will apply the

generalized VCG mechanism to our TMDP in the restricted

model and give definition of a buyer i’s payment as follows:

Definition 6.VCG Payment Mechanism for Proposed
Combinatorial Auction: We denote the payment for buyer

i as pi. We denote gi as the goods buyer i receives in the

final allocation. We can see that gi = Ci when buyer i wins

and gi = ∅ when i loses. Further, we denote v(gi) as valuation

obtained by buyer i in the final allocation. Note that v(gi) = vi
when i wins and v(gi) = 0 when i loses. We denote vopt−i

as the optimal social welfare obtained in the auction where i
is absent. Note that despite i, all other buyers stay the same

when calculating vopt and vopt−i. We have that the payment

is:

pi = vopt−i + v(gi)− vopt (17)

We now give the proof of truthfulness of our payment

scheme:

Theorem 7 The VCG payment mechanism guarantees

truthfulness of the overall auction mechanism.

Proof: The proof the truthfulness of the generalized VCG

mechanism is illustrated very clearly in [27]. Therefore, we

refer readers to this book and will not repeat the proof in our

paper.

Remarks: A natural question raises now: since there is a

standard truthful payment design mechanism, why do we not

use it in section III? The reason is that generalized VCG

mechanism had certain limitations, because the payment of

VCG mechanism is calculated based on the optimal social

welfare and we have proved that the optimal social welfare

cannot be calculated in polynomial time under the model of

section III.

V. SIMULATION RESULTS

A. Simulation of the Time-Frequency Two Dimensional Flex-
ibility Model

We assume there is only one primary operator in the

network and the auction period is one hour. The primary

operator divides the auction period into 10-min long 6 sectors

and divides the whole frequency band to 24 slices. Therefore,

the number of frequency-time slots for SUs to choose is

m = 144. We assume the number of SUs n varies from 100

to 1000. The maximal requirement for any SU is 20 slots. We

further assume that the SUs’ values are uniformly distributed

in [0,1].
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Fig. 4. Comparison of social welfare under
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Fig. 5. Comparison of social welfare under
general model using norm as a benchmark.
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Fig. 6. Comparison of utilization ratio under
general model.
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Fig. 9. Comparison of spectrum utilization
ratio under restricted model.

In Figure 4, we depict the relation between social welfare

and the number of SUs. We use different ordering methods

and the greedy algorithm to generate allocation results. And

in this simulation, we assume that every slot required by SUs

is randomly distributed among 1 to m in a uniform manner. As

we can see, the social welfare generated under the proposed

ordering method, denoted as Norm, is superior to all other

intuitive methods. Value means reordering the bids only in

descending order of valuation. Number means reordering the

bids only in ascending order of the number of the required

slots. AVG means reordering the bids in descending order

of average value per slot. In Figure 5, we use Norm as a

benchmark to evaluate percentage of social welfare reached

by other algorithms compared to that reached by Norm. We

can see that as the SUs’ number increases, the performance

of Number and Value are degrading and that of AVG becomes

better.

In this part, we cannot give a numerical comparison between

the optimal and the approximation solution because solving

CRWDP optimally is NP hard. However, there is only 144

slots and the maximal value for any bundle is 1. Therefore, the

optimal solution is no larger than 144. As we have illustrated

in Section III, our algorithm’s worst case approximation ratio

is
√
m, that is 1

12 . However, we can see that the social welfare

obtained by our algorithm is much larger than 1
12 ×144 = 12.

Our algorithm performs much better than worst case ap-

proximation ratio. A more explicit and numerical comparison

between optimal and approximation method will be done in

the simulation of the restricted network model.

In Figure 6, we show the spectrum utilization ratio, which

indicates the ratio of allocated slots to the total slots of PO.

Figure 6 shows that Value has the best spectrum utilization

ratio and Norm is the second best followed by AVG and Num.

We can see that to reach a better social welfare, the utilization

ratio is compromised. However, when the number of SUs is

sufficiently large, we can see that the utilization ratio of Norm
is acceptable.

B. Simulation of the Restricted Model

In this subsection, we move to the restricted model in

Section IV. We assume that the primary operator divides the

spectrum opportunity into m = 144 frequency slices. The

SUs’ requirements must meet consecutive requirements and

full time usage condition. Therefore, we can generate an SU’s

requirement by a start point of frequency and a interval length.

In this simulation, a SU can require at most 20 consecutive

frequency slices. The start points of his requirement are

uniformly distributed in 1 to 144.

It is critical to notice that the CRWDP-C is a special case of

CRWDP. Though we have polynomial time optimal algorithm

for CRWDP-C, the approximation method for CRWDP can

also be implemented in CRWDP-C. Therefore, it is actually



a good chance to test the performance of the approximation

algorithm. In Figure 7, we not only depict the optimal social

welfare against the number of SUs but also give the results

of other three approximation methods. In Figure 8, we use

the optimal solution as a benchmark to evaluate other three

approximation algorithms. The algorithm Norm, which is

proposed in Section III, continually has a high approximation

ratio, around 97% of the optimal solution. Therefore, we can

conclude that our approximation algorithm performs very well.

In Figure 9, we show the utilization ratio of different

algorithms in the modified model. The utilization ratio of

the optimal solution is not the highest. We regard this as a

necessary tradeoff to achieve high social welfare. We also

observe that the utilization ratio of the proposed approximation

algorithm is not as high as that of the optimal algorithm.

However, the utilization ratio is sufficiently high when the

number of SU is large.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we firstly design a novel model to divide the

spectrum opportunity of primary operator into time-frequency

slots. Under this model, to cater to the time-frequency flexible

requirements, we design a truthful and efficient combinatorial

auction method to approximate the optimal solution of social

welfare, which is NP hard to solve. Then we reduce the

time-frequency two dimensional flexibility to only frequency

flexibility. Under the restricted model, we devise a polynomial

time winner determination algorithm to reach the optimal

social welfare and a VCG payment mechanism to guarantee

the truthfulness. In simulation, we show that our algorithms

perform well and shows a tradeoff between social welfare and

spectrum utilization ratio.

Because we model the SUs’ requirements in a new way and

introduce the concept of combinatorial auction into cognitive

radio. We believe there are many future works to be done.

Firstly, in our paper, we only allow one SU submits one bid

b = {C, v} at a time. If we allow one SU to submit multiple

bids at a time, that is to say, if any of these bids is fulfilled,

the requirement of this SU can be regard as fulfilled. The

whole system will have more application meanings. What’s

more, an online auction mechanism with consideration of time-

frequency flexibility is also an interesting topic.
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