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Abstract
Rumor blocking is a serious problem in large-scale social net-
works. Malicious rumors could cause chaos in society and
hence need to be blocked as soon as possible after being de-
tected. In this paper, we propose a model of dynamic rumor
influence minimization with user experience (DRIMUX).
Our goal is to minimize the influence of the rumor (i.e., the
number of users that have accepted and sent the rumor) by
blocking a certain subset of nodes. A dynamic Ising propa-
gation model considering both the global popularity and in-
dividual attraction of the rumor is presented based on realis-
tic scenario. In addition, different from existing problems of
influence minimization, we take into account the constraint
of user experience utility. Specifically, each node is assigned
a tolerance time threshold. If the blocking time of each us-
er exceeds that threshold, the utility of the network will de-
crease. Under this constraint, we then formulate the problem
as a network inference problem with survival theory, and pro-
pose solutions based on maximum likelihood principle. Ex-
periments are implemented based on large-scale real world
networks and validate the effectiveness of our method.

Introduction
With the soaring development and rising popularity of large-
scale social networks such as Twitter, Facebook, and Chi-
nese Weibo, etc., hundreds of millions of people are able to
share all kinds of information with each other online. On
one hand, these online social platforms provide great con-
venience to the diffusion of positive information such as
new ideas, innovations, and hot topics (Montanari and S-
aberi 2010). On the other hand, however, they may become
a channel for the spreading of malicious rumors or misin-
formation (Budak, Agrawal, and Abbadi 2011). For exam-
ple, some people may post on social networks a rumor about
an upcoming earthquake, which will cause chaos among the
crowd and hence may hinder the normal public order. Un-
doubtedly, these malicious rumors should be stopped as soon
as possible once detected so that their negative influence can
be minimized.

Most of the previous works studied the problem
of maximizing the influence of positive information
through social networks based on the Independent Cas-
cade (IC) model, (Kempe, Kleinberg, and Tardos 2003;
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Chen, Wang, and Wang 2010; Shirazipourazad et al. 2012).
In contrast, the negative influence minimization problem
has gained much less attention, but still there have been
consistent efforts on designing effective strategies for
blocking malicious rumors and minimizing the negative
influence. (Budak, Agrawal, and Abbadi 2011) introduced
the notion of a “good” campaign in a social network
to counteract the negative influence of a “bad” one by
convincing users to adopt the “good” one. (Kimura, Saito,
and Motoda 2009) studied the problem of minimizing the
propagation of malicious rumors by blocking a limited
number of links in a social network. They provided two
different definitions of contamination degree and proposed
corresponding optimization algorithms. (Fan et al. 2013)
investigated the least cost rumor blocking problem in social
networks. They introduced the concept of “protectors” and
try to select a minimal number of them to limit the bad in-
fluence of rumors by triggering a protection cascade against
the rumor cascade. However, there are a few limitations in
those works. First, they consider the rumor popularity as
constant during the whole propagation process, which is not
close to the realistic scenarios. Second, in the design of the
rumor blocking strategies, either blocking nodes or links,
they fail to take into account the issue of user experience
in real world social networks. We have to avoid blocking
the users’ accounts for such a long time that they may lodge
complaints or even quit the social network. Therefore, it is
necessary to consider the impact of blocking time on both
individual node and the entire network.

In this paper, we investigate the problem of dynamic
rumor influence minimization with user experience. First,
we incorporate the rumor popularity dynamics in diffusion
model. We analyze existing investigations on topic propaga-
tion dynamics (Yang and Leskovec 2011) and choose Chi-
squared distribution to approximate the global rumor popu-
larity. Inspired by the novel energy model proposed by (Han
et al. 2014), we then analyze the individual tendency toward-
s the rumor and present the probability of successful rumor
propagation between a pair of nodes. Finally, inspired by the
concept in Ising model (Chelkak and Smirnov 2012), we de-
rive the cooperative succeeding probability of rumor propa-
gation that integrates the global rumor popularity with indi-
vidual tendency. After that, we introduce the concept of user



experience utility function and analyze the impact of block-
ing time of nodes to the rumor propagation process. We then
adopt the survival theory to explain the likelihood of nodes
getting activated, and propose both greedy and dynamic al-
gorithms based on maximum likelihood principle.

The rest of the paper is organized as follows: First, we
introduce the preliminaries; then we give an overview of the
related work; after that, we propose the problem formulation
and the solutions; experiments are presented in the following
section; and finally, the paper is concluded.

Preliminaries

Social Network Definition

A social network, in mathematical context, can be formu-
lated as a directed graph G = (V,E) consisting of a set of
nodes V representing the users, and a set of directed edges
E denoting the relationship between users (e.g. following or
being followed). Let |V | = N denote the number of nodes,
and (u, v) ∈ E denote the directed edge from node u to node
v (u, v ∈ V ), and αuv ∈ {0, 1} denote the edge coefficient,
where αuv = 1 represents the existence of edge (u, v), and
αuv = 0, otherwise. We use puv to denote the probability of
u sending the rumor to v and v accepting it, i.e., the success
probability of u activating v. Let D(u) denote the in-degree
of node u.

Diffusion Model

Diffusion models describe the process of information prop-
agating through the network. Two classic diffusion model-
s are Linear Threshold (LT) and Independent Cascade (IC)
model. In LT model, an inactive node u becomes activated if
the ratio of its activated parent nodes surpasses a certain pre-
defined threshold 0 < θ < 1. Although it indicates a latent
tendency of a node becoming activated when its neighbors
do, the LT model fails to consider the individual difference
of each node in a social network. Therefore, we adopt the
more complex IC model in our work.

The IC model has been widely adopted in information d-
iffusion problems. The whole propagation process proceeds
in discrete time steps t0, t1, t2, . . . . Initially, the cascade is
triggered by a set of activated nodes, i.e., the seed nodes at
t0. In our rumor diffusion context, we assume the rumor is
started by one source node s in the network, and the other
nodes are inactive. We use su(t) ∈ {0, 1} to denote the s-
tate of node u at time step t, where su(t) = 1 represents u
is activated and su(t) = 0, otherwise. For every following
time step t ≥ 1, each node u which was activated at time
step (t − 1) has a single opportunity to activate any of it-
s currently inactive neighbors v with a success probability
puv . In our context, it means in each time step, any node that
has accepted the rumor in previous time step has a chance to
let their inactive neighbors accept the rumor. For simplicity,
we assume that once a node is activated by the rumor, it will
stay activated until the end of the diffusion process.

Related Work
Topic Dynamics
Researchers have studied the temporal dynamics of web
topics based on real-world statistics. (Yang and Leskovec
2011) analyzed how the number of tweets related to a
specific theme (i.e., the popularity of a topic) changes with
time, and revealed that a topic evolution generally consists
of three phases, i.e., a rising phase from the start, a peak
period and then a fading phase. Fluctuations in each phase
may result in different temporal characteristics. (Yang and
Leskovec 2011) proposed K-Spectral Centroids clustering
algorithm for classifying online content according to their
temporal patterns and finally extract six representative
patterns from million-scale tweets and blog posts. (Crane
and Sornette 2008) demonstrated the existence of Poisson
distribution and Power-law relaxation in controlling the top-
ic evolution over time. In our work, we use the Chi-squared
distribution to simulate the rumor propagation dynamics.

Energy Model
(Han et al. 2014) proposed a novel energy model to describe
the rumor propagation process. They introduce the heat en-
ergy calculation formula ∆E = cm∆T in Physics to analo-
gize the rumor impact. The rumor’s influence on individual
node is formulated as the amount of accumulated heat en-
ergy. Inspired by the simulated annealing algorithm (Bertsi-
mas and Tsitsiklis 1993), they define the rumor’s attraction
to the nodes as an annealing process. Based on the model,
we define the individual tendency with the success activa-
tion probability between a pair of nodes

User Experience
User experience is an important factor for various services
including social networks. Existing rumor blocking strate-
gies block either nodes (users) or links (connections be-
tween users) in social networks to prevent the rumor from
further propagation. However, none has analyzed the impact
of blocking nodes. Generally speaking, the longer the us-
er is blocked, the less satisfactory the user feels about the
social network. Therefore, if the blocked time surpasses a
certain threshold, it is possible that the user may quit the
social network or at least lodge a complaint to the admin-
istrator. (Bhatti, Bouch, and Kuchinsky 2000) analyzed the
user-perceived quality in web server design and found that
users’ tolerance for latency decreases over the duration of
interaction with a site. A utility function was presented to
measure the customer satisfaction. Inspired by that, in our
work, we apply a modified utility function to measure user
experience in rumor blocking.

Rumor Influence Minimization
Rumor influence minimization addresses the problem of
minimizing the propagation effect of undesirable rumors in
social networks. It is converse to the classic influence maxi-
mization problem (Kempe, Kleinberg, and Tardos 2003).
The rumor influence minimization (RIM) problem has been



investigated in different influence diffusion models in so-
cial networks. (Fan et al. 2013) studied the least cost rumor
blocking problem in social networks, and introduced the no-
tion of “protectors” to limit the bad influence of rumors by
initiating a protector cascade to propagate against the rumor
cascade. Greedy algorithm is proposed for both opportunis-
tic and deterministic cascade models. However, (Kimura,
Saito, and Motoda 2009) proposed the strategy of blocking
links instead of nodes in social networks so as to minimize
the propagation of malicious rumors. Different contamina-
tion minimization problems are defined based on different
definitions of contamination degree of a network.

Problem Formulation
Dynamic Rumor Propagation with Ising Model
(Kempe, Kleinberg, and Tardos 2003) considered the suc-
cess probability puv as a system parameter and is fixed at
the very first beginning of the cascade. However, based on
the topic dynamics we discussed in a previous section, at d-
ifferent time steps of the propagation process, a topic can
vary dramatically in its popularity. Besides, the rumor at-
traction (Han et al. 2014) for each individual node u ∈ V
is also a realistic factor we should take into account. That
means the success of rumor propagation between neighbors
includes two aspects: first, the activated node u has to be
so attracted by the rumor that it will choose to send the ru-
mor to its neighbors; second, one of u’s inactive neighbors
v decides to accept the rumor. Only after those two steps,
can we claim that v is activated. In other words, the success
of rumor propagation depends both on the global popularity
and the individual tendency of the rumor topic, which can
be regarded as a generalized feature of the Ising model.

Now we investigate the two steps of a successful rumor
propagation. In the first step, at any time stamp tj , u is one of
the activated nodes in time stamp (tj−1). Based on the work
in (Han et al. 2014), we give the modified version of the
probability of node u sending the rumor to one of its inactive
neighbors v as psend

u (tj) = p0
lg(10+tj)

, where p0 is the initial
sending probability at time stamp 0. The probability of node
v accepting the rumor is also given as pacc

v = 1/Dv , where
Dv is the in-degree of node v. Thus, we give the probability
of successful rumor propagation from u to v as

pind(tj) = psend
u · pacc

v =
1

Dv
p0

lg(10 + tj)
, (1)

which can be defined as the individual tendency between d-
ifferent pair of nodes in the network.

Now we discuss the global topic popularity of the rumor.
As mentioned in related work, the rumor popularity gener-
ally includes three phases and approximately subject to the
chi square distribution, which is given by

pglb(t; k) =
2(1−

k
2 )tk−1e−

t2

2

Γ(k2 )
, (2)

where k > 0 represents the degree of freedom, Γ(·) is the
Gamma function. It explains a common social phenomenon
that when a rumor spreads for a while, it may create a “rumor

atmosphere” that could affect the judgements or decisions of
users on online social networks.

According to the Ising model (Chelkak and Smirnov
2012), the “phase transition” of a spin involves both short-
range interaction with its nearest neighbors and long-term
system evolution, and is a cooperative result. Inspired by
that, we propose the cooperative propagation probability in-
tegrating pglb(t; k) with pind(t) as

puv(t) =β1 · pglb(t; k) + β2 · pind(t)

=β1
2(1−

k
2 )tk−1e−

t2

2

Γ(k2 )
+ β2

1

Dv
p0

lg(10 + tj)
, (3)

where β1, β2 ∈ (0, 1) are the balance coefficients which sat-
isfy β1 + β2 = 1.

Based on this cooperative propagation probability, the
probability of node v getting activated at time stamp tj can
be given by

Pr[sv(tj) = 1] = 1−
∏
u∈Pv

[1− su(tj−1)puv(tj)], (4)

where Pr[·] represents probability, and Pv represents the
parent nodes of v.

User Experience Utility
Before giving the concrete algorithm, we first elaborate
on the user experience utility function (Bhatti, Bouch, and
Kuchinsky 2000).

For simplicity, we assume that all the nodes have the same
blocked time threshold Tth. In other words, we assume that
all users have the same tolerance when being blocked. Under
this assumption, we define the user experience utility func-
tion as

Ub =
1

N

N∑
u=1

Tth − Tb(u)

Tth
, (5)

where the Tth represents the tolerance time threshold, Tb(u)
is used to record the blocked time of node u in the whole
propagation process.

Objective Formulation
Now our goal is to minimize the influence of a rumor as
much as possible (e.g. minimize the number of activated n-
odes at the end of propagation process) under the constraint
of user experience utility. We formulate the DRIMUX prob-
lem as follows:

min E[
∑
v∈V

sv(tth) ]

s. t. Ub ≥ Uth,

(6)

where tth represents the time instant when the user experi-
ence utility Ub just triggers the threshold Tth, and it deter-
mines the observation time window T that we are going to
discuss in the following section.



Proposed Solutions
In this section, we analyze the DRIMUX optimization prob-
lem from the perspective of a network inference problem
with survival theory and then propose the greedy algorith-
m and dynamic blocking algorithm based on different nodes
selection schemes and the maximum likelihood principle.

Survival Theory
In our model, we assume that the rumor has spread for some
time, and it is detected at time t0 by the system. It is al-
so assumed that by time t0, there have already been a total
number of N1 activated nodes, and N2 = N − N1 nodes
are remain inactive. Let VN1 and VN2 denote the set of acti-
vated and inactive nodes at time t0 respectively. Therefore,
from t0 on, the system can be viewed as N1 independent
cascades propagating through the network, and our goal is
to selectK nodes and block them so that the final number of
activated nodes during the observation time window T can
be minimized. Let C = (c1, . . . , cN1

) denote the set of cas-
cades triggered by N1 activated nodes by time t0. A cascade
ci ∈ C can be represented by a N -dimensional time vector
tci = (tci1 , . . . , t

ci
N2

) where tcij ∈ [t0, t0 + T ] ∪ {∞}, j =
1, 2, . . . , N2 is the activated time of node j in cascade ci.
The observation time window T is decided by the user expe-
rience utility constraint mentioned in (6), and∞ means the
node is not activated until the end of the observation time
(t0 + T ).

Here we consider only one cascade and the results can
be extended to multiple cascades. Define αv(t|s(t)) as the
hazard rate of node v conditioned on the set of nodes acti-
vated by time t. Our goal now is to analyze the impact of the
hazard rate of different nodes to the rumor influence mini-
mization problem.

Survival Function First, we introduce the survival func-
tion defined as (Aalen, Borgan, and Gjessing 2008)

S(t) = Pr(t < T ), (7)

where T is the occurrence time of an event of interest, t
is some specified time. The survival function represents the
probability that the event of interest occurs after the observa-
tion “deadline”. If we use the terminology “death” to repre-
sent the occurrence of the event, we can claim that the target
“survives”. Then we have the cumulative distribution func-
tion F (t):

F (t) = Pr(T ≤ t) = 1− S(t). (8)

Accordingly, the probability density function f(t) is given
by

f(t) =
d

dt
F (t). (9)

Hazard Rate The hazard rate which characterizes the in-
stantaneous rate of occurrence of an event is defined as:

αv(t|s(t)) = lim
dt→0

Pr(t ≤ T ≤ t+ dt|T > t)

dt

=− S′(t)

S(t)
, (10)

where S′(t) is the derivative of S(t). Accordingly, we can
have

S(t) = e−
∫ t
0
αv(τ |s(τ))dτ , (11)

and for a certain node v, we have

Fv(t|s(t)) = 1− e−
∫ t
0
αv(τ |s(τ))dτ . (12)

Based on the survival analysis, we propose an additive sur-
vival model where the hazard rate is given by

αv(t|s(t)) = αTv s(t) =
∑
u:tu<t

αuvpuv(t), (13)

where αv = (αuv), u = 1, 2, . . . , N is a non-negative pa-
rameter vector indicating the existence of the edge between
node u and v. αuv = 1 if there is an edge between them; and
αuv = 0, otherwise.

We define a coefficient matrix A := [αv] ∈ RN×N+ to
denote the structure of network, and A0 be the original net-
work coefficient matrix before any nodes are blocked. Then
we calculate Fv(t|s(t)) as:

Fv(t|s(t)) =1− e
−

∫ t
tu

∑
u:tu<t

αuvpuv(τ)dτ

=1− e
−

∑
u:tu<t

∫ t
tu
αuvpuv(τ)dτ

=1−
∏

u:tu<t

e−αuv

∫ t
tu
puv(τ)dτ . (14)

Accordingly, we have the likelihood function of the activa-
tion of node v, fv(t|s(t)), as following:

fv(t|s(t)) =
∑
u:tu<t

αuvpuv(t)
∏
%:t%<t

e
−α%v

∫ t
t%
p%v(τ)dτ .

(15)

Given the activation likelihood of a single inactive node
v ∈ VN2

, now we consider any number of inactive n-
odes in a cascade. During the entire observation window T ,
t≤T = (t1, . . . , ti, . . . , tN |t0 ≤ ti ≤ t0 + T ). We assume
that every activation is conditionally independent on activa-
tions occurring later given previous activations. Then we can
compute the activation likelihood as:

f(t≤T ; A) =
∏
i:ti<T

∑
u:tu<ti

αuvpuv(ti)×

∏
%:t%<ti

e
−α%v

∫ ti
t%
p%v(τ)dτ . (16)

Based on the activation likelihood function, we design the
blocking algorithms. First, we choose to select and block
all K nodes at the same time t0. As is shown in Eq. (16),
the activation likelihood of an inactive node v is related to
the hazard rate coming from all previously activated nodes.
Therefore, the early activated nodes play a significant role in
the entire process. Hence, we propose the following greedy
algorithm to minimize the influence of the rumor within one
time stamp after it is detected. We assume that there are M
time steps: t1, . . . , tM during the whole observation window
T , with each time step lasting T/M .
Greedy Algorithm. At time t0 when we detect the rumor,



we immediately select K nodes and block them, trying to
minimize the likelihood of nodes getting activated at t1. The
likelihood of nodes getting activated at time t1 is given by

f(t1|s(t0)) =
∏

v∈VN2

∑
u:tu≤t0

αuvpuv(t1)×

∏
%:t%≤t0

e
−α%v

∫ t1
t%
p%v(τ)dτ . (17)

Correspondingly, the objective function is

min
A

f(t1|s(t0))

s. t. αuv ∈ {0, 1}.
(18)

Then, the greedy algorithm is presented as below:

Algorithm 1 Greedy Algorithm
Input: Initial Edge matrix A0.
Initialization: VB = ∅.
for i = 1 to K do
u = arg max

v∈V
[f(t1|s(t0); Ai−1)−f(t1|s(t0); Ai−1\v)]

Ai := Ai−1\u,
VB = VB ∪ {u}.

end for
Output: VB .

Dynamic Blocking Algorithm Different from the greedy
blocking algorithm, the dynamic blocking algorithm blocks
the K nodes in separated steps. In this way, the algorith-
m is able to capture the dynamic characteristics along rumor
propagation. Correspondingly, the likelihood function is giv-
en by

f(tj |s(tj−1)) =
∏

v∈V (tj)

∑
u:tu<tj

αuvpuv(tj)×

∏
%:t%<tj

e
−α%v

∫ tj
t%
p%v(τ)dτ , (19)

where V (tj) represents the set of nodes which remain in-
active at time stamp tj . Based on Eq. (19), the algorithm is
presented as following:

Algorithm 2 Dynamic Blocking Algorithm
Input: Initial Edge matrix A0.
Initialization: VB(t) = ∅.
for j = 1 to n do

for i = 1 to kj do
∆f = f(tj |s(tj−1); Ai−1)−f(tj |s(tj−1); Ai−1\v),
u = arg max

v∈V
{∆f},

Ai := Ai−1\u,
VB(tj) = VB(tj) ∪ {u}.

end for
end for
Output: VB(t).

The dynamic blocking algorithm runs as follows: at the
very first stage of blocking, we select a number k1 nodes

to block based on the Edge matrix and previously infected
nodes; in the next round, we move forward with the rumor
diffusion, and then use the updated status to block additional
k2 nodes. The blocking process continues at each following
instants until the budget runs out at a moment tn, which can
be expressed as

∑n
j=1 kj = K. In real implementation, we

decrease kj as time goes by, and a practical example is kj =

2(−j) ∗K.
Instead of blocking K candidates at the moment of detec-

tion, as previous static blocking strategies do, this dynamic
approach is carried out in a progressive way. The design phi-
losophy is to take advantage of instantaneous information all
along the dissemination, since this the activation likelihood
of a given moment is a variable which depends on the tem-
poral Edge matrix and previous status. Rather than sparing
all the efforts at once, we apply consequent force to block
the diffusion of rumors. In this way, the global efficiency
outweighs the previous static decisions.

Experiments
Dataset: Network extracted from the SinaWeibo, with
23086 nodes, and 183549 edges.
Notations: Let Ninit denote the number of initial nodes at
the beginning of the propagation, Tstart denote the time
when the rumor is detected, and Bamount represent the
amount of nodes to be blocked. All the parameters are select-
ed based on empirical results that approximate the realistic
scenario. Three algorithms are presented in the experiments
for comparison which are listed as follows:

• Classic Greedy: Greedy algorithm based on descendant
order of nodes degree and is used as the baseline algorith-
m.

• Proposed Greedy: the order is determined by the max-
imum likelihood function. By blocking a node, we can
generate a new propagation matrix and reach a new max-
imum survival likelihood value.

• Dynamic Algorithm: This algorithm adjusts to each
propagation status, and gradually includes new targeted
nodes as long as the cost is within the scope of tolerable
user experience.

In order to simulate a real-scenario dissemination process,
we assign several nodes as rumor initiators at the beginning.
After a certain period of natural propagation, the rumor is
detected by the system and thus we launch our blocking s-
trategy. The vertical dashed line in every figure marks the
debut of blockage on potential nodes.

In Figure 1, each selected node is blocked for a pre-
defined constant period of time Tb. We repeat the propaga-
tion process for 1000 times and take the average value as the
general feature. The black curve stands for Classic Greedy,
blue one for Proposed Greedy, and finally red for Dynamic
Blocking Algorithm. Obviously, the propagation rate is de-
creased to different degrees after the introduction of block-
age. As previewed, according to eventual infection range,
the dynamic algorithm performs the best among these strate-
gies, since the propagation range is minimized at the end of
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Figure 1: Rumor infection ratio varies along time with
Ninit = 54, Tstart = 12, and Bamount = 64.
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Figure 2: Rumor infection ratio varies along time with
Ninit = 32, Tstart = 12, and Bamount = 16.

propagation under this schema. In the following is our pro-
posed maximum likelihood greedy algorithm, which blocks
all candidates at once and use a metric different from tradi-
tional approach. The dynamic property is revealed from the
early stage of rumor blocking. In detail, during the period
[15, 25], the blue curve lies under the red one, which indi-
cates the slower propagation rate for the static schema. This
can be explained by the fact that the dynamic algorithm does
block fewer nodes than the static ones at the first moment.
After certain moments (about 25 iterations), the blue curve
overpasses the red because the dynamic strategy constantly
introduce new seeds for blocking.

Figure 2 and 3 illustrate the blocking efficiency under dif-
ferent costs, i.e., the number of nodes that could be blocked.
It is shown that when the investment is abundant, and we
have enough nodes to block under certain circumstances,
the advantage of our proposed dynamic strategy becomes
more obvious since the subsequent efforts on blockage are
increased and thus more powerful in dealing with variances.
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Figure 3: Rumor infection ratio varies along time with
Ninit = 32, Tstart = 12, and Bamount = 64.
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Figure 4: Rumor infection ratio varies along time with dif-
ferent block durations using dynamic blocking algorithm.

Figure 4 is generated using the dynamic blocking algo-
rithm and reflects the effect of different block durations on
rumor propagation range, i.e., the infection ratio at the end
of the propagation. As is shown in the figure, the longer a
node is blocked, the slower the rumor propagates. This ben-
efit, however, is obtained at the expense of declined user ex-
perience. The result helps us to analyze the possibility of
achieving close performance with less cost. It is also no-
ticeable that this result is coherent to our analysis on User
Experience.

Conclusion
In this paper, we investigate the rumor blocking problem in
social networks. We propose the dynamic rumor influence
minimization with user experience model to formulate the
problem. A dynamic rumor diffusion model incorporating
both global rumor popularity and individual tendency is pre-
sented based on the Ising model. Then we introduce the con-
cept of user experience utility and propose a modified ver-



sion of utility function to measure the relationship between
the utility and blocking time. After that, we use the survival
theory to analyze the likelihood of nodes getting activated
under the constraint of user experience utility. Greedy al-
gorithm and a dynamic blocking algorithm are proposed to
solve the optimization problem based on different nodes s-
election strategies. Experiments implemented on real world
social networks show the efficacy of our method. In our fu-
ture work, we plan to assign different blocked time thresh-
olds to different nodes and design the corresponding block-
ing strategies. We will also verify our algorithms on multiple
datasets.
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